Collaborative Research: Models for Dynamic Discrete Response Data with Spatial Autocorrelation: Specification and Estimation

协作研究:具有空间自相关的动态离散响应数据模型:规范和估计

基本信息

  • 批准号:
    0819087
  • 负责人:
  • 金额:
    $ 3.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

Many behaviors of interest involve discrete response in a temporal and spatial context. These may be the success of plant species in a series of adjacent fields, land-use designations across 30-meter grid cells, popular election outcomes across counties, and levels of crime across neighborhoods and over time. In the transportation arena, such responses include trade-flow distributions across zones, and vehicle-ownership levels across households. All these behaviors can be measured (and/or coded) as discrete responses, dependent on various influential factors and exhibiting some degree of temporal and spatial dependence or autocorrelation. Significant uncertainty generally lingers in predictive models; unobservable yet influential factors remain. The size of such contributions varies, often in a continuous fashion over space. In contrast to time-series data, the dependencies are two dimensional. This added complexity tends to limit model specifications to the use of weight matrices, smaller data sets, and arbitrary correlation patterns. Methods are needed to capitalize on the emergence of huge and highly detailed digital data sets. This work seeks to address existing gaps by developing new statistical models for discrete response data that incorporate the effects of spatial and temporal autocorrelation. The research will develop, estimate, apply, and compare dynamic ordered and unordered probit models for spatial processes, based on a marriage of satellite imagery and more commonly available data bases for urban systems analysis. The first of these models emphasizes ordered responses (such as differing intensities of land use), while the latter recognizes unordered, categorical data (using a latent-response optimization framework). Both sets of models will apply over time and space, using a combination of LandSat satellite imagery and more readily available data sets over several years. Multiple parameter estimation techniques will be explored, including maximum simulated likelihood estimation (MSLE), Bayesian methods, generalized method of moments (GMM), and non-parametric techniques. Model application will be demonstrated using land-cover/land-use data acquired via LandSat satellite imagery for Austin, Texas, and less urbanized regions of the globe as data sets become available. The Austin imagery will be supplemented by U.S. Census data and land-use and transportation-systems data maintained by the region's planning agency. Almost all data sets have a spatial dimension to them and the world is poised to benefit from improvements in spatial econometric methods and channels of data acquisition for a tremendous variety of applications. The first of these models will be used to better understand and anticipate changes in the intensity of land development (e.g., undeveloped, lightly developed, and highly developed), while the second will be used to appreciate variations in land use over a categorical (rather than ordered) set of designations (e.g., residential versus commercial versus undeveloped). The focus and most challenging aspects of the work are methodological in nature. Nevertheless, the use of land-use data sets offers a meaningful and highly tangible application that demonstrates the value of new spatial econometric methods and the benefits of satellite imagery in tandem with more traditional data sets. The work's primary contributions are specification and estimation techniques for wholly new statistical methods that recognize temporal and spatial dependencies in discrete multiple-response data, and the demonstration of how satellite images can be used for purposes of metropolitan planning and transportation systems modeling. The model specifications and estimation techniques to be developed will fill a key void in the fields of spatial statistics and spatial econometrics, where models of continuous response data are the norm. The generic nature of the spatial econometric methods to be developed makes them applicable to many social, environmental, and other issues, wherever outcomes are discrete in nature and observed over time and space. Their application to land-cover change will enhance current understanding of regional development and human activity patterns, facilitating public and private policy evaluation.
许多感兴趣的行为涉及时间和空间背景下的离散响应。 这些可能是植物物种在一系列相邻领域的成功,30米网格单元的土地使用指定,各县的流行选举结果,以及社区和时间的犯罪水平。 在交通竞技场中,此类响应包括跨区域的贸易流分布以及跨家庭的车辆拥有水平。 所有这些行为都可以被测量(和/或编码)为离散响应,依赖于各种影响因素,并表现出一定程度的时间和空间依赖性或自相关性。 预测模型中通常存在显著的不确定性;不可观察但有影响力的因素仍然存在。 这种贡献的大小各不相同,往往在空间上是连续的。与时间序列数据相比,相关性是二维的。 这种增加的复杂性往往会限制模型规范使用权重矩阵,较小的数据集和任意的相关模式。 需要有方法来利用巨大和高度详细的数字数据集的出现。 这项工作旨在解决现有的差距,开发新的统计模型,离散响应数据,纳入空间和时间的自相关的影响。 该研究将开发,估计,应用和比较动态有序和无序概率模型的空间过程,基于婚姻的卫星图像和更常见的数据库的城市系统分析。 其中第一个模型强调有序响应(例如不同的土地利用强度),而后者识别无序的分类数据(使用潜在响应优化框架)。 这两套模型将结合使用LandSat卫星图像和几年来更容易获得的数据集,适用于不同的时间和空间。 将探讨多参数估计技术,包括最大模拟似然估计(MSLE),贝叶斯方法,广义矩量法(GMM)和非参数技术。 将在获得数据集后,利用通过LandSat卫星图像获得的得克萨斯州奥斯汀和地球仪城市化程度较低地区的土地覆盖/土地使用数据演示模型的应用。 奥斯汀的图像将得到美国人口普查数据以及该地区规划机构维护的土地使用和交通系统数据的补充。几乎所有的数据集都有空间维度,世界将从空间计量经济学方法的改进和各种应用的数据获取渠道中受益。 第一个模型将用于更好地了解和预测土地开发强度的变化(例如,未开发、轻度开发和高度开发),而第二个将用于在分类(而不是有序)的一组指定(例如,住宅与商业与未开发)。 这项工作的重点和最具挑战性的方面是方法问题。 然而,土地使用数据集的使用提供了一种有意义和非常具体的应用,显示了新的空间计量经济学方法的价值以及卫星图像与更传统的数据集结合使用的好处。 这项工作的主要贡献是规范和估计技术的全新的统计方法,识别离散多响应数据的时间和空间依赖性,以及如何卫星图像可以用于大都市规划和交通系统建模的目的示范。 有待开发的模型规格和估计技术将填补空间统计学和空间计量经济学领域的一个关键空白,在这两个领域,连续响应数据模型是规范。 空间计量经济学方法的通用性使其适用于许多社会,环境和其他问题,只要结果是离散的性质和观察时间和空间。 将其应用于土地覆被变化将提高目前对区域发展和人类活动模式的认识,促进公共和私营部门的政策评价。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaokun (Cara) Wang其他文献

Truck freight demand elasticity with respect to tolls in New York State
  • DOI:
    10.1016/j.tra.2017.04.035
  • 发表时间:
    2017-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiaokun (Cara) Wang;Dapeng Zhang
  • 通讯作者:
    Dapeng Zhang
Multi-criteria assessment and ranking framework for the potential of cargo cycle operation: Using New York city as an example
货物循环运营潜力的多标准评估与排名框架:以纽约市为例
Commercial vehicle parking duration in New York City and its implications for planning
  • DOI:
    10.1016/j.tra.2018.06.018
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joshua Schmid;Xiaokun (Cara) Wang;Alison Conway
  • 通讯作者:
    Alison Conway
Double parking in New York city: a comparison between commercial vehicles and passenger vehicles
  • DOI:
    10.1007/s11116-021-10212-5
  • 发表时间:
    2021-08-07
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Woojung Kim;Xiaokun (Cara) Wang
  • 通讯作者:
    Xiaokun (Cara) Wang

Xiaokun (Cara) Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaokun (Cara) Wang', 18)}}的其他基金

SCC-CIVIC-PG Track B: A Coordinated Food Hub Network and Farm to Institution Program: Building Bridges between Small Local Farmers and Institutions in New York State Capital Region
SCC-CIVIC-PG 轨道 B:协调的食品中心网络和农场到机构计划:在纽约州首府地区当地小农民和机构之间架起桥梁
  • 批准号:
    2228544
  • 财政年份:
    2022
  • 资助金额:
    $ 3.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Models for Dynamic Discrete Response Data with Spatial Autocorrelation: Specification and Estimation
协作研究:具有空间自相关的动态离散响应数据模型:规范和估计
  • 批准号:
    1137517
  • 财政年份:
    2011
  • 资助金额:
    $ 3.89万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 3.89万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 3.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 3.89万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 3.89万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334798
  • 财政年份:
    2024
  • 资助金额:
    $ 3.89万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346565
  • 财政年份:
    2024
  • 资助金额:
    $ 3.89万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 3.89万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346564
  • 财政年份:
    2024
  • 资助金额:
    $ 3.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    $ 3.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411530
  • 财政年份:
    2024
  • 资助金额:
    $ 3.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了