Organic Acid Promoted Dissolution of Phosphate as Affected by its Solid State Speciation in Single and Mixed Fe, Al, Ca Mineral Systems: Implications for Phosphorus Bioavailability

有机酸促进磷酸盐溶解,受单一和混合 Fe、Al、Ca 矿物系统中固态形态的影响:对磷生物利用率的影响

基本信息

  • 批准号:
    0819962
  • 负责人:
  • 金额:
    $ 22.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

Intellectual Merit: The current understanding of organic acid mediated phosphate dissolution is limited by the lack of a molecular scale characterization of its solid state speciation. Furthermore, phosphate dissolution has not been studied in context of its uptake without the complicating influence of metabolism as in microbial cells or plants. Our current knowledge can mainly be attributed to wet chemical studies in soils whose inherent complexity makes it difficult to characterize the effect of primary environmental variables (pH, concentration of phosphate, type of organic acid and its concentration). In addition, phosphate dissolution in binary and tertiary mixtures of iron, aluminum and Ca minerals (main sorbents of phosphate) that can serve as an effective analog for soils has not been investigated. Based on a molecular scale XANES based investigation of phosphate sorption in 1:1 (by mass) binary mixtures of Fe-oxide and Aloxide minerals or Ca containing minerals, we can now: 1) quantify the distribution of phosphate between individual mineral phases in binary and ternary mixtures (Khare et al., 2004; Beauchemin et al., 2003); 2) distinguish between adsorption and surface precipitation in single mineral and binary mixtures (Khare et al., 2005); and 3) determine phosphate bonding configuration and differentiate between surface complexes (Khare et al., 2007). Thus, we are now in a position to exploit these XANES based tools in uncovering molecular mechanisms of phosphate dissolution. This research will include a high affinity transporter for yeast cells reconstituted into proteoliposomes as a sink for dissolved phosphate to understand and realistically predict phosphate dissolution in natural systems.The proposed research will take place over two years and will address two main hypotheses:Hypothesis 1: Phosphate dissolution in single mineral, binary and tertiary mixtures is controlled by the solid state speciation (mode of phosphate bonding, adsorption vs. surface precipitation and the partitioning of phosphate in individual mineral phases), of phosphate in these minerals.Hypothesis 2: Phosphate uptake will be adversely affected by Al3+ in binary mixtures of Fe and Al containing minerals however in ternary mineral systems the presence of Ca2+ will ameliorate Al toxicity. Broader Impacts: Phosphorus is an essential plant macronutrient and also a potential water pollutant. Most terrestrial and marine ecosystems are P limited because phosphate minerals are sparingly soluble. Because organic acids citrate, malate released by plants roots or microbes are considered the main mode of P solubilisation in soils and other natural systems, this basic geochemical research is pertinent to improving soil fertility. This is particularly significant because food production needs to double in the next 20 years to sustain increasing world population. Characterizing organic acid mediated phosphate dissolution at the nano scale will also help with better predictions of phosphorus bioavailability and release. Recently phosphate release from heavily fertilized P enriched soils has degraded surface water quality, causing eutrophication. Furthermore, better estimates of phosphate bioavailability will help predict CO2 uptake rates critical to predicting global warming. This project will contribute to a graduate student's dissertation, to be supervised by the PI and co-PI jointly. An integrated wet chemical, spectroscopic (XANES), microscopic (TEM) and geochemical modeling approach will be used.
知识价值:目前对有机酸介导的磷酸盐溶解的理解受到缺乏其固态形态的分子尺度表征的限制。此外,磷酸盐溶解尚未在其摄取的背景下进行研究,而不像在微生物细胞或植物中那样受到代谢的复杂影响。我们目前的知识主要可以归功于土壤的湿化学研究,其固有的复杂性使得难以表征主要环境变量(pH值,磷酸盐浓度,有机酸类型及其浓度)的影响。此外,磷酸盐溶解在铁、铝和钙矿物(磷酸盐的主要吸附剂)的二元和三级混合物中,可以作为土壤的有效模拟物,但尚未进行研究。基于基于XANES的分子尺度对铁氧化物和氧氧化物矿物或含钙矿物1:1(质量)二元混合物中磷酸盐吸附的研究,我们现在可以:1)量化二元和三元混合物中单个矿物相之间磷酸盐的分布(Khare等人,2004;Beauchemin等人,2003);2)区分单一矿物和二元混合物中的吸附和表面沉淀(Khare等,2005);3)确定磷酸键构型并区分表面配合物(Khare et al., 2007)。因此,我们现在能够利用这些基于XANES的工具来揭示磷酸盐溶解的分子机制。这项研究将包括酵母细胞的高亲和力转运体重组为蛋白质脂质体,作为溶解磷酸盐的汇,以了解和现实地预测自然系统中磷酸盐的溶解。拟议的研究将在两年多的时间内进行,并将解决两个主要假设:假设1:磷酸盐在单一矿物,二元和三级混合物中的溶解受这些矿物中磷酸盐的固态形态(磷酸盐结合模式,吸附与表面沉淀以及磷酸盐在单个矿物相中的分配)的控制。假设2:在含铁和含铝矿物的二元混合物中,磷酸盐的摄取将受到Al3+的不利影响,然而在三元矿物系统中,Ca2+的存在将改善铝的毒性。广泛影响:磷是一种必需的植物常量营养素,也是一种潜在的水污染物。大多数陆地和海洋生态系统都是磷有限的,因为磷矿物很少可溶。植物根系或微生物释放的有机酸柠檬酸盐、苹果酸盐被认为是土壤和其他自然系统中磷溶解的主要方式,这一基础地球化学研究与提高土壤肥力有关。这一点尤其重要,因为粮食产量需要在未来20年翻一番,才能维持不断增长的世界人口。在纳米尺度上表征有机酸介导的磷酸盐溶解也将有助于更好地预测磷的生物利用度和释放。近年来,磷从富磷土壤中大量释放,使地表水水质恶化,造成富营养化。此外,更好地估计磷酸盐的生物利用度将有助于预测二氧化碳吸收率,这对预测全球变暖至关重要。该项目将作为研究生论文的一部分,由PI和co-PI共同指导。将使用综合湿化学、光谱(XANES)、微观(TEM)和地球化学建模方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nadia Adam其他文献

Twisted Gastrulation Modulates Bone Morphogenetic Protein-induced Collagen II and X Expression in Chondrocytes <em>in Vitro</em> and <em>in Vivo</em>
  • DOI:
    10.1016/s0021-9258(19)84094-2
  • 发表时间:
    2006-10-20
  • 期刊:
  • 影响因子:
  • 作者:
    Martina Schmidl;Nadia Adam;Cordula Surmann-Schmitt;Takako Hattori;Michael Stock;Uwe Dietz;Benoit de Crombrugghe;Ernst Po¨schl;Klaus von der Mark
  • 通讯作者:
    Klaus von der Mark

Nadia Adam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nadia Adam', 18)}}的其他基金

SBIR Phase I: Broad Spectrum biorational bio- and synthetic insecticides and mosquito repellents
SBIR 第一阶段:广谱生物合理的生物和合成杀虫剂和驱蚊剂
  • 批准号:
    1938569
  • 财政年份:
    2020
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant
SBIR Phase I: Novel Biomimetic Production of Broad-Spectrum Fungicide BioSurF-I
SBIR 第一阶段:广谱杀菌剂 BioSurF-I 的新型仿生生产
  • 批准号:
    1721879
  • 财政年份:
    2017
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant

相似国自然基金

基于F/IGF1R/PKC ζ 通路研究夏枯草中 Mesonolic acid B抑制RSV感染性肺炎的 作用机制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Quinic acid通过抑制肠道菌群代谢产物脱氧胆酸调节巨噬细胞M1向M2极化改善动脉粥样硬化的机制研究
  • 批准号:
    2025JJ80556
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
巨噬细胞来源代谢物suberic acid抑制蜕膜早衰防治早产的作用机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
色氨酸代谢产物Kynurenic Acid在脓毒症肠损伤中的诊断价值及其机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    5.0 万元
  • 项目类别:
    省市级项目
石榴皮活性成分Ellagic acid调控脂肪酸代谢重编程抑制NASH相关肝癌发生的作用机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
具有抗耐药甲氧西林金黄色葡萄球菌活性天然产物quiannulatic acid的分子作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
DPA(docosapentaenoic acid, 22:5n-3)对溃疡性结肠炎小鼠肠道菌群影响及特异性菌群筛选的研究
  • 批准号:
    LQ22C200008
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
真菌来源抗肿瘤倍半萜terrecyclic acid生物合成及类似物基因组挖掘研究
  • 批准号:
    32000044
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
木霉菌抗真菌物质Harzianic Acid的合成机制及其应用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
  • 批准号:
    2309886
  • 财政年份:
    2024
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Continuing Grant
CAREER: Tiny Drops of Acid: Microwave Spectroscopy and Isomer-resolved IR Spectroscopy of Hydrohalic Acid-Water Clusters
职业:微小的酸滴:氢卤酸-水簇的微波光谱和异构体分辨红外光谱
  • 批准号:
    2340303
  • 财政年份:
    2024
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Continuing Grant
CAREER: Molecular imprinting strategy to rationally design porous solid acid catalysts for C-C coupling chemistries
职业:分子印迹策略合理设计用于 C-C 偶联化学的多孔固体酸催化剂
  • 批准号:
    2340993
  • 财政年份:
    2024
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Continuing Grant
Unravelling Efficient Nucleic Acid Delivery Using Multilayer Nanoparticles
使用多层纳米粒子揭示有效的核酸输送
  • 批准号:
    DP240102642
  • 财政年份:
    2024
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Discovery Projects
Developing the toolbox of compounds that target acid-sensing proteins
开发针对酸敏蛋白的化合物工具箱
  • 批准号:
    DE240101233
  • 财政年份:
    2024
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Discovery Early Career Researcher Award
Phenotypic consequences of a modern human-specific amino acid substitution in ADSL
ADSL 中现代人类特异性氨基酸取代的表型后果
  • 批准号:
    24K18167
  • 财政年份:
    2024
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ICF - Evaluate the potential of AstraZeneca's sialic acid tag technology for treating influenza viruses with Fc molecules
ICF - 评估阿斯利康唾液酸标签技术用 Fc 分子治疗流感病毒的潜力
  • 批准号:
    MR/Y503459/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Research Grant
Gas-Phase Synthesis of Hydrocyanic Acid through Oxidation of N2
N2 氧化气相合成氢氰酸
  • 批准号:
    2459357
  • 财政年份:
    2024
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Studentship
Nucleic acid stimulation-induced mechanism to overcome MDSC-mediated immune tolerance in tumor microenvironment
核酸刺激诱导机制克服肿瘤微环境中MDSC介导的免疫耐受
  • 批准号:
    24K18539
  • 财政年份:
    2024
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
I-Corps: Translation potential of a miniaturized biotechnology platform for nucleic acid extraction, purification, and library preparation
I-Corps:用于核酸提取、纯化和文库制备的小型生物技术平台的转化潜力
  • 批准号:
    2421022
  • 财政年份:
    2024
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了