Geometry and Topology in Mainstream Culture

主流文化中的几何和拓扑

基本信息

  • 批准号:
    0822022
  • 负责人:
  • 金额:
    $ 14.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-10-01 至 2011-09-30
  • 项目状态:
    已结题

项目摘要

Geometric topology was once a fringe topic, well studied in graduate schools but almost unknown in mainstream culture. Happily, in recent years public interest has increased. The key to effectively presenting geometric topology to a broad audience is to keep in mind that explanations using words alone are sure to fail. Explanations using pictures will convey a vague sense of the intended meaning. But to deeply understand the topology of a multi-connected space, the learner must experience the space for him or herself. One of the P.I.'s missions in life --- and the subject of the present project --- is to provide computer software that enables children and other non-specialists to experience 2-manifolds, 3-manifolds, and other structures directly. For example, the P.I.'s existing Torus Games have already proved effective with students from fifth grade on up, leading them to the mind-stretching concept of multiconnected spaces (specifically, the flat 2-torus and the flat Klein bottle). The present project aims to maintain this kid-friendly approach while extending the software's mathematical scope to include spherical and hyperbolic 2-manifolds as well as 3-manifolds.While mathematicians' and physicists' understanding of space has made tremendous progress, the general public's understanding still lags behind. Part of the reason is that, while the modern concept of space is not inherently difficult to understand, it is extremely difficult to explain in words. Explanations with pictures work a little better, but in practice they too usually prove inadequate. The only truly effective way for a student (or nonspecialist adult) to fully grasp a new concept of space is for the student to experience the new space for him or herself. The P.I.'s existing Torus Games software lets students develop a gut-level understanding of spaces that are finite yet have no boundaries; this software is widely used in middle and high schools and is effective with students from fifth grade on up. The present project aims to maintain this kid-friendly approach while extending the software's mathematical scope to include curved spaces as well as flat ones, and 3-dimensional spaces as well as "toy" 2-dimensional ones. Cosmologists are currently investigating the hypothesis that the real universe might be finite, but no matter whether that hypothesis is ultimately accepted or rejected, spaces of all sorts (flat and curved, finite and infinite, 2-dimensional and 3-dimensional) play a pervasive role throughout physics and mathematics, and merit a broader understanding in our culture as a whole.
几何拓扑学曾经是一个边缘话题,在研究生院中得到了很好的研究,但在主流文化中几乎不为人知。令人高兴的是,近年来公众的兴趣有所增加。要有效地向广大观众展示几何拓扑,关键是要记住,仅用文字解释肯定会失败。 使用图片的解释将传达一种模糊的意图。但要深入理解多连通空间的拓扑结构,学习者必须亲自体验空间。其中一个私家侦探的使命在生活中-和本项目的主题-是提供计算机软件,使儿童和其他非专业人员的经验,2流形,3流形,和其他结构直接。例如,P.I.现有的Torus游戏已经被证明对五年级以上的学生有效,引导他们认识到多连通空间的思维拉伸概念(特别是平坦的2-torus和平坦的Klein瓶)。本项目的目标是保持这种儿童友好的方法,同时将软件的数学范围扩展到包括球面和双曲2-流形以及3-流形。虽然数学家和物理学家对空间的理解已经取得了巨大的进步,但普通公众的理解仍然落后。 部分原因是,虽然现代空间概念本身并不难理解,但用语言解释却极其困难。用图片来解释会更好一些,但在实践中,它们通常也是不够的。 对于学生(或非专业的成年人)来说,完全掌握一个新的空间概念的唯一真正有效的方法是让学生亲自体验新的空间。 私家侦探现有的Torus Games软件可以让学生对有限但没有边界的空间进行深入的理解;该软件广泛用于初中和高中,对五年级以上的学生有效。 本项目旨在保持这种儿童友好的方法,同时扩展软件的数学范围,包括弯曲空间以及平面空间,三维空间以及“玩具”二维空间。 宇宙学家目前正在研究一个假设,即真实的宇宙可能是有限的,但无论这个假设最终被接受还是拒绝,各种空间(平坦和弯曲,有限和无限,二维和三维)在整个物理学和数学中发挥着普遍的作用,并且值得在我们的文化中得到更广泛的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Weeks其他文献

Jeffrey Weeks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Weeks', 18)}}的其他基金

Geometry and Topology in Mainstream Culture, Part III
主流文化中的几何和拓扑,第三部分
  • 批准号:
    1503701
  • 财政年份:
    2015
  • 资助金额:
    $ 14.78万
  • 项目类别:
    Standard Grant
Geometry and Topology in Mainstream Culture, Part II
主流文化中的几何和拓扑,第二部分
  • 批准号:
    1136261
  • 财政年份:
    2012
  • 资助金额:
    $ 14.78万
  • 项目类别:
    Standard Grant
Cosmic Topology and Software Development
宇宙拓扑和软件开发
  • 批准号:
    0452612
  • 财政年份:
    2005
  • 资助金额:
    $ 14.78万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 14.78万
  • 项目类别:
    Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 14.78万
  • 项目类别:
    Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 14.78万
  • 项目类别:
    Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
  • 批准号:
    2341204
  • 财政年份:
    2024
  • 资助金额:
    $ 14.78万
  • 项目类别:
    Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 14.78万
  • 项目类别:
    Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
  • 批准号:
    2405405
  • 财政年份:
    2024
  • 资助金额:
    $ 14.78万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 14.78万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 14.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    $ 14.78万
  • 项目类别:
    Continuing Grant
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
  • 批准号:
    2340664
  • 财政年份:
    2024
  • 资助金额:
    $ 14.78万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了