Algorithms and Complexity for Global Optimization

全局优化的算法和复杂性

基本信息

  • 批准号:
    0825381
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

This grant provides funding for the development of numerical algorithms for approximating the global optimum of performance measures that can have many local optima. The approach is based on modeling the unknown performance measure as a random function, and then developing deterministic algorithms that minimize the average approximation error. The research will comprise two main components. The first component will be to construct algorithms for different types of available information and different classes of objective functions, including continuous functions with various orders of differentiability. The types of information will include: exact function evaluations, derivative evaluations, and function evaluations corrupted by random noise. The second part of the research will be to determine complexity bounds. For a given problem setting, for example continuous functions with exact function evaluations, the investigator will establish bounds on the smallest average error that can be attained with any algorithm.If successful, the algorithms developed in this project will be useful for two main types of problems. The first application is to the optimization of complex systems with continuous parameters where the system performance can be evaluated exactly and assumptions such as unimodality or convexity of the performance measure are not warranted. Such problems include optimizing groundwater contamination treatment plans and molecular geometry optimization. The second class of problems is the optimization of systems where the performance can only be observed corrupted by random noise. Such situations arise, for example, when the performance of the system being studied can only be estimated using a stochastic discrete-event simulation. In both cases the complexity bounds will indicate if a problem is tractable and provide guidance on how near to optimal a given algorithm is.
这笔赠款提供资金,用于开发数值算法,以逼近可能具有许多局部最优的性能衡量的全局最优。该方法基于将未知的性能度量建模为随机函数,然后开发确定性算法来最小化平均逼近误差。这项研究将包括两个主要部分。第一个组成部分将是针对不同类型的可用信息和不同类别的目标函数构建算法,包括具有各种阶可微性的连续函数。信息类型包括:精确函数求值、导数求值和被随机噪声破坏的函数求值。研究的第二部分将是确定复杂性界限。对于给定的问题设置,例如具有精确函数计算的连续函数,研究人员将建立任何算法可以获得的最小平均误差的界。如果成功,本项目中开发的算法将对两种主要类型的问题有用。第一种方法应用于具有连续参数的复杂系统的优化,其中系统性能可以被准确地评估,而不需要假设性能度量是单峰性或凸性的。这些问题包括优化地下水污染处理方案和分子构型优化。第二类问题是系统的优化,其中性能只能观察到被随机噪声破坏。例如,当所研究的系统的性能只能使用随机离散事件模拟来估计时,就会出现这种情况。在这两种情况下,复杂性界限都将指示问题是否易于处理,并为给定算法的最优程度提供指导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Calvin其他文献

A Global Perspective on Socioeconomic Determinants of Cardiovascular Health
心血管健康的社会经济决定因素的全球视角
  • DOI:
    10.1016/j.cjca.2024.07.024
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Bart Wilder;Alejandro Pinedo;Salaheldin Abusin;David Ansell;Adrian Matias Bacong;James Calvin;Sung Whoy Cha;Rami Doukky;Faisal Hasan;Shengyuan Luo;Ahmet Afşin Oktay;Latha Palaniappan;Natasha Rana;Frederick Berro Rivera;Basmah Fayaz;Ahmed Ali Suliman;Annabelle Santos Volgman
  • 通讯作者:
    Annabelle Santos Volgman
Convergence rate of a rectangular subdivision-based optimization algorithm for smooth multivariate functions
  • DOI:
    10.1007/s11590-021-01792-3
  • 发表时间:
    2021-08-11
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Cuicui Zheng;James Calvin
  • 通讯作者:
    James Calvin
On convergence rate of a rectangular partition based global optimization algorithm
  • DOI:
    10.1007/s10898-018-0636-z
  • 发表时间:
    2018-03-07
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    James Calvin;Gražina Gimbutienė;William O. Phillips;Antanas Žilinskas
  • 通讯作者:
    Antanas Žilinskas
Improvement science supports the timely initiation of amiodarone after complex cardiac surgery to reduce postoperative atrial fibrillation
Itraconazole disposition after single oral and intravenous and multiple oral dosing in healthy cats.
健康猫单次口服、静脉注射和多次口服给药后伊曲康唑的分布。
  • DOI:
    10.2460/ajvr.1997.58.08.872
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    1
  • 作者:
    D. Boothe;I. Herring;James Calvin;Nelson Way;Joy Dvorak
  • 通讯作者:
    Joy Dvorak

James Calvin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Calvin', 18)}}的其他基金

Optimization Algorithms for Decision Problems with Many Variables
多变量决策问题的优化算法
  • 批准号:
    1562466
  • 财政年份:
    2016
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
MRI: Development of a High Density, High Performance Beowulf Cluster
MRI:高密度、高性能贝奥武夫集群的开发
  • 批准号:
    0216275
  • 财政年份:
    2002
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Efficient Simulation of Large-Scale Systems
大型系统的高效仿真
  • 批准号:
    9900117
  • 财政年份:
    1999
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Average Complexity of Global Optimization
全局优化的平均复杂度
  • 批准号:
    9696243
  • 财政年份:
    1996
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Average Complexity of Global Optimization
全局优化的平均复杂度
  • 批准号:
    9500173
  • 财政年份:
    1995
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Research Initiation: Stochastic Optimization and Search Algorithms
研究启动:随机优化和搜索算法
  • 批准号:
    9010770
  • 财政年份:
    1990
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant

相似海外基金

Modularity and Complexity in Global Trauma System Development
全球创伤系统开发的模块化和复杂性
  • 批准号:
    2891561
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Studentship
Functional roles of tree neighbourhood diversity and complexity in the face of global changes
面对全球变化,树邻域多样性和复杂性的功能作用
  • 批准号:
    121906-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
Functional roles of tree neighbourhood diversity and complexity in the face of global changes
面对全球变化,树邻域多样性和复杂性的功能作用
  • 批准号:
    121906-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
BRIDGE - Building Resilience In a Dynamic Global Economy: Complexity across scales in the Food-Water-Energy Nexus
BRIDGE - 在充满活力的全球经济中建立韧性:食品-水-能源关系中跨尺度的复杂性
  • 批准号:
    ES/N013174/1
  • 财政年份:
    2016
  • 资助金额:
    $ 26万
  • 项目类别:
    Research Grant
Collaborative Research: EAGER-NEON: Is Canopy Structural Complexity a Global Predictor of Primary Production?: Using NEON to Transform Understanding of Forest Structure-function
合作研究:EAGER-NEON:树冠结构复杂性是初级生产的全球预测因子吗?:利用 NEON 转变对森林结构功能的理解
  • 批准号:
    1550639
  • 财政年份:
    2015
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER-NEON: Is Canopy Structural Complexity a Global Predictor of Primary Production?: Using NEON to Transform Understanding of Forest Structure-function
合作研究:EAGER-NEON:树冠结构复杂性是初级生产的全球预测因子吗?:利用 NEON 转变对森林结构功能的理解
  • 批准号:
    1550657
  • 财政年份:
    2015
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER-NEON: Is Canopy Structural Complexity a Global Predictor of Primary Production?: Using NEON to Transform Understanding of Forest Structure-function
合作研究:EAGER-NEON:树冠结构复杂性是初级生产的全球预测因子吗?:利用 NEON 转变对森林结构功能的理解
  • 批准号:
    1550650
  • 财政年份:
    2015
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER-NEON: Is Canopy Structural Complexity a Global Predictor of Primary Production?: Using NEON to Transform Understanding of Forest Structure-function
合作研究:EAGER-NEON:树冠结构复杂性是初级生产的全球预测因子吗?:利用 NEON 转变对森林结构功能的理解
  • 批准号:
    1560944
  • 财政年份:
    2015
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Functional roles of tree neighbourhood diversity and complexity in the face of global changes
面对全球变化,树邻域多样性和复杂性的功能作用
  • 批准号:
    121906-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
Functional roles of tree neighbourhood diversity and complexity in the face of global changes
面对全球变化,树邻域多样性和复杂性的功能作用
  • 批准号:
    121906-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了