Efficient Simulation of Large-Scale Systems

大型系统的高效仿真

基本信息

  • 批准号:
    9900117
  • 负责人:
  • 金额:
    $ 18.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-06-15 至 2004-05-31
  • 项目状态:
    已结题

项目摘要

This grant provides funding for the development of new methodologies for improving the efficiency of simulations of large-scale stochastic systems, such as those arising in manufacturing, telecommunications, production/inventory, finance, and transportation. The basic ideas underlying many of the award techniques is to extract or utilize more information from a simulation than is done in the standard approaches.The methods are related to existing variance-reduction techniques such as control variates, which collect additional data that are used to modify the estimator, leading to less variability. The Principal Investigators propose to develop other approaches that similarly exploit ignored information from simulations to improve the estimator. Several of the proposed techniques take a particular realization of the simulation output and construct many other possible realizations from it. Estimates of the performance measure of interest are computed from each realization, and the estimates are then averaged. This leads to lower variability thanthe standard approach. The Principal Investigators plan to establish the validity of these methodologies under various assumptions and develop computationally efficient implementations of the ideas. One of the desired outcomes is to show that the proposed methods are optimal under certain conditions. If successful, the results of the project will lead to significant improvements in the efficiency of simulations of large-scale systems. The basic ideas underlying the methods are quite general and versatile, and they can be combined with other existing simulation techniques.
该赠款为开发新方法提供资金,以提高大规模随机系统的模拟效率,例如制造业,电信,生产/库存,金融和运输中出现的系统。 许多奖励技术的基本思想是从模拟中提取或利用比标准方法更多的信息,这些方法与现有的方差减少技术有关,例如控制变量,它收集用于修改估计量的额外数据,从而减少可变性。 主要研究人员建议开发其他方法,类似地利用模拟中被忽略的信息来改进估计器。 所提出的技术中有几种采用模拟输出的特定实现,并从中构建许多其他可能的实现。从每个实现计算感兴趣的性能度量的估计,然后对估计进行平均。 这导致比标准方法更低的可变性。 主要研究人员计划在各种假设下建立这些方法的有效性,并开发这些想法的计算效率实现。 期望的结果之一是表明所提出的方法在某些条件下是最优的。 如果成功,该项目的结果将导致大规模系统模拟效率的显著提高。这些方法的基本思想是通用的,并且可以与其他现有的仿真技术相结合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Calvin其他文献

A Global Perspective on Socioeconomic Determinants of Cardiovascular Health
心血管健康的社会经济决定因素的全球视角
  • DOI:
    10.1016/j.cjca.2024.07.024
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Bart Wilder;Alejandro Pinedo;Salaheldin Abusin;David Ansell;Adrian Matias Bacong;James Calvin;Sung Whoy Cha;Rami Doukky;Faisal Hasan;Shengyuan Luo;Ahmet Afşin Oktay;Latha Palaniappan;Natasha Rana;Frederick Berro Rivera;Basmah Fayaz;Ahmed Ali Suliman;Annabelle Santos Volgman
  • 通讯作者:
    Annabelle Santos Volgman
Convergence rate of a rectangular subdivision-based optimization algorithm for smooth multivariate functions
  • DOI:
    10.1007/s11590-021-01792-3
  • 发表时间:
    2021-08-11
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Cuicui Zheng;James Calvin
  • 通讯作者:
    James Calvin
On convergence rate of a rectangular partition based global optimization algorithm
  • DOI:
    10.1007/s10898-018-0636-z
  • 发表时间:
    2018-03-07
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    James Calvin;Gražina Gimbutienė;William O. Phillips;Antanas Žilinskas
  • 通讯作者:
    Antanas Žilinskas
Improvement science supports the timely initiation of amiodarone after complex cardiac surgery to reduce postoperative atrial fibrillation
Itraconazole disposition after single oral and intravenous and multiple oral dosing in healthy cats.
健康猫单次口服、静脉注射和多次口服给药后伊曲康唑的分布。
  • DOI:
    10.2460/ajvr.1997.58.08.872
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    1
  • 作者:
    D. Boothe;I. Herring;James Calvin;Nelson Way;Joy Dvorak
  • 通讯作者:
    Joy Dvorak

James Calvin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Calvin', 18)}}的其他基金

Optimization Algorithms for Decision Problems with Many Variables
多变量决策问题的优化算法
  • 批准号:
    1562466
  • 财政年份:
    2016
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Standard Grant
Algorithms and Complexity for Global Optimization
全局优化的算法和复杂性
  • 批准号:
    0825381
  • 财政年份:
    2008
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Standard Grant
MRI: Development of a High Density, High Performance Beowulf Cluster
MRI:高密度、高性能贝奥武夫集群的开发
  • 批准号:
    0216275
  • 财政年份:
    2002
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Standard Grant
Average Complexity of Global Optimization
全局优化的平均复杂度
  • 批准号:
    9696243
  • 财政年份:
    1996
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Standard Grant
Average Complexity of Global Optimization
全局优化的平均复杂度
  • 批准号:
    9500173
  • 财政年份:
    1995
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Standard Grant
Research Initiation: Stochastic Optimization and Search Algorithms
研究启动:随机优化和搜索算法
  • 批准号:
    9010770
  • 财政年份:
    1990
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Standard Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

EAGER: Liutex-based Sub-Grid Model for Large Eddy Simulation of Turbulent Flow
EAGER:基于 Liutex 的湍流大涡模拟子网格模型
  • 批准号:
    2422573
  • 财政年份:
    2024
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Standard Grant
CBET-EPSRC: Deep Learning Closure Models for Large-Eddy Simulation of Unsteady Aerodynamics
CBET-EPSRC:用于非定常空气动力学大涡模拟的深度学习收敛模型
  • 批准号:
    EP/X031640/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Research Grant
SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
  • 批准号:
    2321329
  • 财政年份:
    2023
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Standard Grant
Verified Simulation for Large Quantum Systems (VSL-Q)
大型量子系统的验证仿真 (VSL-Q)
  • 批准号:
    EP/Y005244/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Research Grant
Building-Block-Flow Model for Large-Eddy Simulation
用于大涡模拟的积木流模型
  • 批准号:
    2317254
  • 财政年份:
    2023
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Standard Grant
Large Eddy Simulation in Complex Turbulent Flows with Coarse Resolution
复杂湍流中的粗分辨率大涡模拟
  • 批准号:
    2321473
  • 财政年份:
    2023
  • 资助金额:
    $ 18.94万
  • 项目类别:
    Standard Grant
AR-CPR: Refinement and Large-Scale Simulation-Based Testing of a Novel Augmented Reality Point of Care Chest Compression Feedback System.
AR-CPR:新型增强现实护理点胸外按压反馈系统的改进和大规模基于模拟的测试。
  • 批准号:
    10643491
  • 财政年份:
    2023
  • 资助金额:
    $ 18.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了