Collaboration in Mathematical Geosciences: Nonintegrable Hamiltonian Systems in Geophysical Fluid Dynamics

数学地球科学合作:地球物理流体动力学中的不可积哈密顿系统

基本信息

  • 批准号:
    0825547
  • 负责人:
  • 金额:
    $ 76.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

This study will apply results of Kolmogorov-Arnold-Moser (KAM) theory and the structure of stable and unstable manifolds of generally nonstationary hyperbolic points in nonsteady flows. These manifolds are often referred to as Lagrangian coherent structures, or LCSs, in fluid dynamical applications. KAM theory and manifold structure are intimately linked. Applications are: (i) the connections between jets, transport barriers and potential vorticity barriers in the Earth?s oceans and stratosphere; (ii) LCS climatology associated with the general circulation of the ocean and the connection between these structures and the predominant Eulerian features of the general circulation; (iii) biological applications of oceanic LCSs including problems involving harmful algal blooms, plankton patchiness, and understanding observed biogeographical boundaries; and (iv) problems involving a dynamical systems approach to wave propagation in random inhomogeneous media.The work will be potentially beneficial to the society in several ways. First, it addresses transport of properties in the ocean. Applications include transport of fish larvae, plankton distributions including harmful algal blooms, toxins, and pollutants. Some of these substances have potentially significant human health implications. The transport of fish larvae is relevant to management of fishery stocks and the design of marine reserves. Search and rescue operations at sea are also intimately linked to ocean transport. Second, the findings on transport barriers in the stratosphere will have implications for global warming because such barriers strongly influence the distribution of greenhouse gases (including ozone) in the atmosphere. Also, it is critically important to understand such barriers, if considering geo-engineering measures to counteract greenhouse-induced global warming. Third, there are potential industrial applications of our work. In most industrial applications involving transport, the objective is to efficiently mix two or more fluids.
本研究将应用Kolmogorov-Arnold-Moser (KAM)理论的结果以及非定常流动中一般非平稳双曲点的稳定流形和不稳定流形的结构。在流体动力学应用中,这些流形通常被称为拉格朗日相干结构(LCSs)。KAM理论与流形结构密切相关。应用有:(i)地球上的喷流、输运屏障和位势涡障之间的联系?大洋和平流层;(ii)与海洋环流有关的LCS气候学以及这些结构与环流的主要欧拉特征之间的联系;(iii)海洋生态系统的生物学应用,包括涉及有害藻华、浮游生物斑块的问题,以及了解观察到的生物地理界限;(iv)涉及随机非均匀介质中波传播的动力系统方法的问题。这项工作将在几个方面对社会有潜在的好处。首先,它解决了海洋财产的运输问题。应用包括运输鱼苗,浮游生物分布,包括有害藻华,毒素和污染物。其中一些物质可能对人类健康产生重大影响。鱼苗的运输关系到渔业资源的管理和海洋保护区的设计。海上搜救行动也与海洋运输密切相关。第二,关于平流层运输屏障的发现将对全球变暖产生影响,因为这种屏障强烈影响大气中温室气体(包括臭氧)的分布。此外,如果考虑采取地球工程措施来抵消温室气体引起的全球变暖,了解这些障碍是至关重要的。第三,我们的研究成果有产业化的潜力。在大多数涉及运输的工业应用中,目标是有效地混合两种或两种以上的流体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francisco Beron-Vera其他文献

Francisco Beron-Vera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francisco Beron-Vera', 18)}}的其他基金

Collaborative Research: Enhancing our Understanding of North Atlantic Deep Water Pathways using Nonlinear Dynamics Techniques
合作研究:利用非线性动力学技术增强我们对北大西洋深水路径的理解
  • 批准号:
    1851097
  • 财政年份:
    2019
  • 资助金额:
    $ 76.33万
  • 项目类别:
    Standard Grant
Workshop: Coherent Structures in Dynamical Systems; Lorentz Center, Leiden, The Netherlands; 16-20 May 2011
研讨会:动力系统中的相干结构;
  • 批准号:
    1057412
  • 财政年份:
    2010
  • 资助金额:
    $ 76.33万
  • 项目类别:
    Standard Grant
CMG: Nonintegrable Hamiltonian Systems in Ocean Dynamics
CMG:海洋动力学中的不可积哈密顿系统
  • 批准号:
    0417425
  • 财政年份:
    2004
  • 资助金额:
    $ 76.33万
  • 项目类别:
    Continuing Grant

相似海外基金

Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
  • 批准号:
    DP240102104
  • 财政年份:
    2024
  • 资助金额:
    $ 76.33万
  • 项目类别:
    Discovery Projects
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
  • 批准号:
    EP/Y028872/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.33万
  • 项目类别:
    Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
  • 批准号:
    EP/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.33万
  • 项目类别:
    Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
  • 批准号:
    EP/Z000580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.33万
  • 项目类别:
    Research Grant
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    $ 76.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401257
  • 财政年份:
    2024
  • 资助金额:
    $ 76.33万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 76.33万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 76.33万
  • 项目类别:
    Standard Grant
REU Site: Undergraduate Mathematical Science Research at James Madison University
REU 网站:詹姆斯麦迪逊大学本科生数学科学研究
  • 批准号:
    2349593
  • 财政年份:
    2024
  • 资助金额:
    $ 76.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 76.33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了