DHB: Longitudinal Analysis and Modeling of Large-Scale Social Networks Based on Cell Phone Records

DHB:基于手机记录的大规模社交网络的纵向分析和建模

基本信息

  • 批准号:
    0826958
  • 负责人:
  • 金额:
    $ 69.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-10-01 至 2012-09-30
  • 项目状态:
    已结题

项目摘要

This project develops novel computational approaches and analytical tools to meet the challenges and opportunities for social network analysis brought by the availability of large-scale longitudinal data generated by the usage patterns of modern communication devices, such as cell-phones. This type of data has several key advantages including the fact that it is statistically extensive (coming from millions of users), purely observational (void of any bias induced by obtrusive measurements), and longitudinal (spanning several years). The extent and longitudinal character of such data brings challenges that can only be tackled by an orchestrated multidisciplinary approach invoking social science, physics methods developed for large-scale interacting particle systems, mathematical statistics and data analysis, and computer science methods for data mining, and agent-based modeling. The project will focus in particular on generating 1) Novel computational and analytic methods for both cross-sectional and longitudinal analysis of large-scale social network data, based on advanced nonlinear time-series methods, community detection algorithms, and probabilistic relational models; 2) Stochastic mathematical models for network behavior coupled across several levels of analysis, including node, dyad, triad and group levels, and 3) A data-driven stochastic individual-based simulation (SIBS) framework with predictive capability for macro-level system behavior, implementing the dynamic models from 2). The SIBS design will allow it to be used as a hypothesis generation multilevel framework for social dynamics, and as an application, it will be employed to uncover the modalities for efficient, targeted spread of information in large-scale dynamic social networks. The suite of methods developed, and the SIBS with its design transparency and parallelism provide data-driven, feature extraction tools for addressing social science questions, as well as aiding mechanism-design and decision-making in practical situations. In particular, they are expected to directly impact applications both within the commercial (product delivery, health-care services, etc.) and non-commercial (urban planning, emergency alert systems, etc.) domains.
该项目开发新颖的计算方法和分析工具,以应对由现代通信设备(如手机)的使用模式产生的大规模纵向数据的可用性所带来的社会网络分析的挑战和机遇。这种类型的数据有几个关键的优势,包括它在统计上是广泛的(来自数百万用户),纯粹是观察性的(没有任何由突发性测量引起的偏差),和纵向的(跨越几年)。这些数据的广度和纵向特征带来了挑战,只能通过协调的多学科方法来解决,这些方法包括社会科学、为大规模相互作用粒子系统开发的物理方法、数学统计和数据分析、数据挖掘和基于代理的建模的计算机科学方法。该项目将特别侧重于:1)基于先进的非线性时间序列方法、社区检测算法和概率关系模型,为大规模社会网络数据的横断面和纵向分析提供新颖的计算和分析方法;2)基于节点、二组、三组和组等多个分析层次的网络行为随机数学模型;3)基于数据驱动的基于个体的随机仿真(SIBS)框架,具有宏观系统行为预测能力,实现了2)的动态模型。SIBS的设计将允许它被用作社会动态的假设生成多层框架,并且作为一个应用程序,它将被用来揭示大规模动态社会网络中有效的、有针对性的信息传播模式。开发的方法套件,以及具有设计透明度和并行性的SIBS,为解决社会科学问题提供了数据驱动的特征提取工具,以及在实际情况下帮助机制设计和决策。特别是,预计它们将直接影响商业(产品交付、保健服务等)和非商业(城市规划、紧急警报系统等)领域的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zoltan Toroczkai其他文献

Zoltan Toroczkai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zoltan Toroczkai', 18)}}的其他基金

CRCNS US-French Research Proposal: Architectural Principles and Predictive Modeling of the Mammalian Connectome
CRCNS 美法研究提案:哺乳动物连接组的架构原理和预测建模
  • 批准号:
    1724297
  • 财政年份:
    2017
  • 资助金额:
    $ 69.98万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 69.98万
  • 项目类别:
    Continuing Grant
Computational approach to security dilemma: understanding state rivalry through multilingual longitudinal analysis of foreign news
解决安全困境的计算方法:通过外国新闻的多语言纵向分析来理解国家竞争
  • 批准号:
    23K25490
  • 财政年份:
    2024
  • 资助金额:
    $ 69.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Parental Social Class and Children's Educational Outcomes: A Longitudinal Analysis of the Millennium Cohort Study and Administrative Data
父母社会阶层与儿童教育成果:千年队列研究和行政数据的纵向分析
  • 批准号:
    ES/X012085/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.98万
  • 项目类别:
    Research Grant
Model-Based and Design-Based Approaches to Longitudinal Causal Decomposition Analysis
基于模型和设计的纵向因果分解分析方法
  • 批准号:
    2243119
  • 财政年份:
    2023
  • 资助金额:
    $ 69.98万
  • 项目类别:
    Standard Grant
Mechanisms of New-Onset Autoimmunity/Longitudinal Immune Systems Analysis (MONA-LISA)
新发自身免疫/纵向免疫系统分析(MONA-LISA)的机制
  • 批准号:
    10655219
  • 财政年份:
    2023
  • 资助金额:
    $ 69.98万
  • 项目类别:
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
  • 批准号:
    10660234
  • 财政年份:
    2023
  • 资助金额:
    $ 69.98万
  • 项目类别:
Computational approach to security dilemma: understanding state rivalry through multilingual longitudinal analysis of foreign news
解决安全困境的计算方法:通过外国新闻的多语言纵向分析来理解国家竞争
  • 批准号:
    23H00793
  • 财政年份:
    2023
  • 资助金额:
    $ 69.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Interpretable Deep Learning Models for Analysis of Longitudinal 3D Mammography Screenings
用于分析纵向 3D 乳房 X 光检查的可解释深度学习模型
  • 批准号:
    10667745
  • 财政年份:
    2023
  • 资助金额:
    $ 69.98万
  • 项目类别:
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 69.98万
  • 项目类别:
Fast-acquisition, robot-mounted, 3D X-ray inspection, with longitudinal failure-analysis for Digital Twins.
快速采集、安装在机器人上的 3D X 射线检测,以及数字孪生的纵向故障分析。
  • 批准号:
    10066346
  • 财政年份:
    2023
  • 资助金额:
    $ 69.98万
  • 项目类别:
    BEIS-Funded Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了