GOALI: Modeling and Control of Fluid Dynamics and Ice Formation in Pharmaceutical Freeze-Drying

目标:药物冷冻干燥中流体动力学和冰形成的建模和控制

基本信息

  • 批准号:
    0829047
  • 负责人:
  • 金额:
    $ 9.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2010-02-28
  • 项目状态:
    已结题

项目摘要

0829047Alexeenko Freeze-drying is widely used in pharmaceutical manufacturing to extend the shelf life of medical drugs and to provide easy shipping and storage. The goal of freeze-drying is to remove the solvent in such a way that the sensitive molecular structure of the active substance of a drug is least disturbed, and to provide a sterile powder that is quickly and completely rehydrated upon the addition of water. This is done by fast freezing followed by sublimation. Freeze-drying is both a time- and energy-intensive manufacturing process. For example, freeze-drying of 50 milliliters of an experimental protein drug takes up to three days and more than 2,000,000 BTU of energy. Currently, the design of freeze-drying equipment, both laboratory-scale and industrial, is based largely on empirical knowledge. The PIs will apply numerical simulations of vapor and non-condensable gas transport in a freeze-dryer chamber and develop models of vapor/ice interphase transport in a condenser. These large-scale simulations will model vapor and noncondensable gas flow and ice formation in freeze-drying using computational fluid dynamics and the direct simulation Monte Carlo method. Numerical modeling will provide insight into the control of the biopharmaceutical freeze-drying process and the design of compact condensers. Experimental studies will validate the developed models by comparison position dependence of sublimation rates in a freeze-dryer chamber under controlled radiative and conductive heat transfer conditions; water vapor flow rates in the chamber-condenser connector by tunable diode laser absorption spectroscopy; ice formation rates and geometric shapes in the condenser for various condensing surface configurations and temperatures; and a wide range of chamber-to-condenser pressure ratios. The validated models and simulation approaches will form a knowledge base by which future designs of freeze-drying systems and processes will be guided in a physics-based as opposed to an empirical approach. Understanding the fluid dynamics of the water vapor and non-condensable gas as well as the dynamics of vapor/ice interface in freeze-dryers will accelerate the development of freeze-dried products and decrease drug manufacturing costs, which will have a very high societal impact.
0829047 Alexeenko冻干广泛应用于药品生产,以延长医疗药品的保质期,并提供方便的运输和储存。冷冻干燥的目的是以药物活性物质的敏感分子结构受到最小干扰的方式去除溶剂,并提供在加入水后快速且完全再水化的无菌粉末。这是通过快速冷冻然后升华来完成的。冷冻干燥是一个时间和能源密集型的制造过程。例如,冷冻干燥50毫升的实验性蛋白质药物需要长达三天的时间和超过2,000,000 BTU的能量。目前,冷冻干燥设备的设计,无论是实验室规模还是工业规模,都主要基于经验知识。PI将应用数值模拟的蒸汽和不凝性气体运输在冷冻干燥室和开发模型的蒸汽/冰相间运输在冷凝器。这些大规模模拟将使用计算流体动力学和直接模拟蒙特卡罗方法模拟冷冻干燥中的蒸汽和不凝性气体流动以及冰的形成。数值模拟将为生物制药冻干过程的控制和紧凑型冷凝器的设计提供深入的了解。实验研究将验证开发的模型比较位置依赖的升华率在冷冻干燥室在受控的辐射和传导传热条件下;水蒸汽流量在室冷凝器连接器的可调谐二极管激光吸收光谱;冰形成率和几何形状的冷凝器为各种冷凝表面配置和温度;以及宽范围的腔室-冷凝器压力比。经验证的模型和模拟方法将形成一个知识库,通过该知识库,冷冻干燥系统和工艺的未来设计将以基于物理的方法而不是经验方法为指导。了解冻干机中水蒸气和不凝性气体的流体动力学以及水蒸气/冰界面的动力学,将加速冻干产品的开发,降低药物制造成本,这将具有非常高的社会影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alina Alexeenko其他文献

Correction: Practical Advice on Scientific Design of Freeze-Drying Process: 2023 Update
  • DOI:
    10.1007/s11095-024-03768-1
  • 发表时间:
    2024-10-07
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Serguei Tchessalov;Vito Maglio;Petr Kazarin;Alina Alexeenko;Bakul Bhatnagar;Ekneet Sahni;Evgenyi Shalaev
  • 通讯作者:
    Evgenyi Shalaev
Spatial Variation of Pressure in the Lyophilization Product Chamber Part 1: Computational Modeling
  • DOI:
    10.1208/s12249-016-0513-3
  • 发表时间:
    2016-05-05
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Arnab Ganguly;Nikhil Varma;Pooja Sane;Robin Bogner;Michael Pikal;Alina Alexeenko
  • 通讯作者:
    Alina Alexeenko
Reconsideration of low Reynolds number flow-through constriction microchannels using the DSMC method
使用 DSMC 方法重新考虑低雷诺数流通收缩微通道
Recommended Best Practices in Freeze Dryer Equipment Performance Qualification: 2022
  • DOI:
    10.1208/s12249-023-02506-x
  • 发表时间:
    2023-01-26
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Arnab Ganguly;Lisa Hardwick;Serguei Tchessalov;Steven L. Nail;Dan Dixon;Frank Kanka;Anthony Guidinas;T. N. Thompson;Cindy Reiter;Zakaria Yusoff;Ted Tharp;Joseph Azzarella;Prerona Sharma;Petr Kazarin;Alina Alexeenko;Michael J. Pikal
  • 通讯作者:
    Michael J. Pikal
Correction to: Recommended Best Practices for Lyophilization Validation—2021 Part I: Process Design and Modeling
  • DOI:
    10.1208/s12249-021-02129-0
  • 发表时间:
    2021-10-18
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Feroz Jameel;Alina Alexeenko;Akhilesh Bhambhani;Gregory Sacha;Tong Zhu;Serguei Tchessalov;Lokesh Kumar;Puneet Sharma;Ehab Moussa;Lavanya Iyer;Rui Fang;Jayasree Srinivasan;Ted Tharp;Joseph Azzarella;Petr Kazarin;Mehfouz Jalal
  • 通讯作者:
    Mehfouz Jalal

Alina Alexeenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alina Alexeenko', 18)}}的其他基金

Collaborative Research: CubeSat Ideas Lab: VIrtual Super-resolution Optics with Reconfigurable Swarms (VISORS)
合作研究:CubeSat Ideas Lab:具有可重构群的虚拟超分辨率光学器件 (VISORS)
  • 批准号:
    1936531
  • 财政年份:
    2019
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Continuing Grant
CDS&E: DEterministic Evaluation of Kinetic Boltzmann equation with Spectral H/p/v Accuracy (DEEKSHA)
CDS
  • 批准号:
    1854829
  • 财政年份:
    2019
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Standard Grant
PFI-RP: Sensors, Computational Modeling, and Bioanalytical Technologies for Closed-Loop Lyophilization
PFI-RP:用于闭环冻干的传感器、计算模型和生物分析技术
  • 批准号:
    1827717
  • 财政年份:
    2018
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Standard Grant
PFI:AIR-TT: Microscale Gas Sensor for Process Monitoring and Control in Bio/Pharmaceutical Lyophilization
PFI:AIR-TT:用于生物/制药冻干过程监测和控制的微型气体传感器
  • 批准号:
    1602061
  • 财政年份:
    2016
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Standard Grant
CAREER: Quantifying and Exploiting Knudsen Thermal Forces in Nano/Microsystems
职业:量化和利用纳米/微系统中的克努森热力
  • 批准号:
    1055453
  • 财政年份:
    2011
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
  • 批准号:
    2302217
  • 财政年份:
    2022
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Standard Grant
GOALI: Modeling, Evaluation, and Control of Tire Blowout for Automated and Partially Automated Vehicles
GOALI:自动和半自动车辆轮胎爆裂的建模、评估和控制
  • 批准号:
    2043286
  • 财政年份:
    2021
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
  • 批准号:
    1762595
  • 财政年份:
    2018
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
  • 批准号:
    1762520
  • 财政年份:
    2018
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Standard Grant
GOALI: Modeling and Control for Manufacturing Intelligence with Cloud Computing and Storage
GOALI:利用云计算和存储进行制造智能的建模和控制
  • 批准号:
    1462910
  • 财政年份:
    2015
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Standard Grant
GOALI: Engineering-Driven Modeling of Multi-Resolution Data for Surface Variation Control
GOALI:用于表面变化控制的多分辨率数据的工程驱动建模
  • 批准号:
    1434411
  • 财政年份:
    2014
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Standard Grant
GOALI: Engineering-Driven Modeling of Multi-Resolution Data for Surface Variation Control
GOALI:用于表面变化控制的多分辨率数据的工程驱动建模
  • 批准号:
    1265860
  • 财政年份:
    2013
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Modeling, Monitoring, and Analysis of Spatial Point Patterns for Manufacturing Quality Control
GOALI/协作研究:用于制造质量控制的空间点模式的建模、监控和分析
  • 批准号:
    1161350
  • 财政年份:
    2012
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Modeling, Monitoring, and Analysis of Spatial Point Patterns for Manufacturing Quality Control
GOALI/协作研究:用于制造质量控制的空间点模式的建模、监控和分析
  • 批准号:
    1161077
  • 财政年份:
    2012
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Standard Grant
GOALI: Multi-scale Modeling and Advanced Control of Glycosylation in Monoclonal Antibody Production
GOALI:单克隆抗体生产中糖基化的多尺度建模和高级控制
  • 批准号:
    1034213
  • 财政年份:
    2010
  • 资助金额:
    $ 9.32万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了