CAREER: Quantifying and Exploiting Knudsen Thermal Forces in Nano/Microsystems

职业:量化和利用纳米/微系统中的克努森热力

基本信息

  • 批准号:
    1055453
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-02-01 至 2017-01-31
  • 项目状态:
    已结题

项目摘要

1055453Alexeenko At the microscale, even moderate temperature differences can result in significant Knudsen forces generated by the non-equilibrium energy exchange between gas molecules and solids immersed in the gas. Exploiting the Knudsen force offers novel mechanisms for actuation, sensing, and energy harvesting in nano/microsystems. The gas Knudsen forces are significant in the presence of thermal gradients that are large on the scale of the gas molecular mean free path. Such conditions occur and can be created in a wide variety of applications involving micron-and submicron-sized structures and a gas ambient. The aligned computational and experimental efforts in this program will provide a pathway for analysis and control of thermal Knudsen forces in current systems "such as atomic force microscopy and MEMS structures" and for future high-precision thermal sensors and actuators.Prediction of thermal Knudsen forces requires kinetic theory description of transport processes in the gas phase, which is beyond the capabilities of conventional macroscopic computational models. The basis for computational investigation is the deterministic solution of Boltzmann kinetic equations for coupled gas-solid thermal interaction in the subcontinuum regime. Closed-form models for Knudsen force will be developed based on the high-fidelity simulations for a wide range of conditions. The modeling will be validated by experimental measurements using Scanning Laser Doppler Vibrometry of microstructures with integrated nanoscale heaters under controlled ambient gas pressure and thermal conditions in a vacuum probe station. The experiments will provide direct calibrated measurements of Knudsen forces in geometries relevant for applications in practical engineered nano/microsystems. The research results will be integrated into the courses on molecular gas dynamics and nano/microsystems engineering. An interactive online tool for simulation of Knudsen force effects in N/MEMS will be created and made available to a worldwide research and education community through nanoHUB (http://nanohub.org). This research is also combined with educational activities aimed at attracting and retaining minority students and providing research opportunities for undergraduate students early in their careers.
在微观尺度上,即使是适度的温差也会导致气体分子和浸入气体中的固体之间的非平衡能量交换产生显著的克努森力。利用克努森力为纳米/微系统中的驱动、传感和能量收集提供了新的机制。在气体分子平均自由程尺度上存在较大的热梯度时,气体克努森力是显著的。在涉及微米和亚微米尺寸结构以及气体环境的各种应用中,都会出现这种情况。该计划的计算和实验工作将为当前系统(如原子力显微镜和MEMS结构)中的热克努森力的分析和控制以及未来的高精度热传感器和执行器提供途径。热克努森力的预测需要气相输运过程的动力学理论描述,这超出了传统宏观计算模型的能力。计算研究的基础是确定解的波耳兹曼动力学方程的耦合气固热相互作用在亚连续统制度。在广泛条件下的高保真仿真的基础上,开发了克努森力的封闭模型。该模型将通过扫描激光多普勒振动测量技术在控制环境气体压力和真空探测站热条件下集成纳米级加热器的微结构的实验测量来验证。这些实验将提供与实际工程纳米/微系统应用相关的几何形状中克努森力的直接校准测量。研究成果将整合到分子气体动力学和纳米/微系统工程课程中。将创建一个用于模拟N/MEMS中克努森力效应的交互式在线工具,并通过nanoHUB (http://nanohub.org)向全球研究和教育界提供。这项研究还与教育活动相结合,旨在吸引和留住少数民族学生,并为本科学生在职业生涯早期提供研究机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alina Alexeenko其他文献

Correction: Practical Advice on Scientific Design of Freeze-Drying Process: 2023 Update
  • DOI:
    10.1007/s11095-024-03768-1
  • 发表时间:
    2024-10-07
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Serguei Tchessalov;Vito Maglio;Petr Kazarin;Alina Alexeenko;Bakul Bhatnagar;Ekneet Sahni;Evgenyi Shalaev
  • 通讯作者:
    Evgenyi Shalaev
Spatial Variation of Pressure in the Lyophilization Product Chamber Part 1: Computational Modeling
  • DOI:
    10.1208/s12249-016-0513-3
  • 发表时间:
    2016-05-05
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Arnab Ganguly;Nikhil Varma;Pooja Sane;Robin Bogner;Michael Pikal;Alina Alexeenko
  • 通讯作者:
    Alina Alexeenko
Reconsideration of low Reynolds number flow-through constriction microchannels using the DSMC method
使用 DSMC 方法重新考虑低雷诺数流通收缩微通道
Recommended Best Practices in Freeze Dryer Equipment Performance Qualification: 2022
  • DOI:
    10.1208/s12249-023-02506-x
  • 发表时间:
    2023-01-26
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Arnab Ganguly;Lisa Hardwick;Serguei Tchessalov;Steven L. Nail;Dan Dixon;Frank Kanka;Anthony Guidinas;T. N. Thompson;Cindy Reiter;Zakaria Yusoff;Ted Tharp;Joseph Azzarella;Prerona Sharma;Petr Kazarin;Alina Alexeenko;Michael J. Pikal
  • 通讯作者:
    Michael J. Pikal
Correction to: Recommended Best Practices for Lyophilization Validation—2021 Part I: Process Design and Modeling
  • DOI:
    10.1208/s12249-021-02129-0
  • 发表时间:
    2021-10-18
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Feroz Jameel;Alina Alexeenko;Akhilesh Bhambhani;Gregory Sacha;Tong Zhu;Serguei Tchessalov;Lokesh Kumar;Puneet Sharma;Ehab Moussa;Lavanya Iyer;Rui Fang;Jayasree Srinivasan;Ted Tharp;Joseph Azzarella;Petr Kazarin;Mehfouz Jalal
  • 通讯作者:
    Mehfouz Jalal

Alina Alexeenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alina Alexeenko', 18)}}的其他基金

Collaborative Research: CubeSat Ideas Lab: VIrtual Super-resolution Optics with Reconfigurable Swarms (VISORS)
合作研究:CubeSat Ideas Lab:具有可重构群的虚拟超分辨率光学器件 (VISORS)
  • 批准号:
    1936531
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CDS&E: DEterministic Evaluation of Kinetic Boltzmann equation with Spectral H/p/v Accuracy (DEEKSHA)
CDS
  • 批准号:
    1854829
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
PFI-RP: Sensors, Computational Modeling, and Bioanalytical Technologies for Closed-Loop Lyophilization
PFI-RP:用于闭环冻干的传感器、计算模型和生物分析技术
  • 批准号:
    1827717
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
PFI:AIR-TT: Microscale Gas Sensor for Process Monitoring and Control in Bio/Pharmaceutical Lyophilization
PFI:AIR-TT:用于生物/制药冻干过程监测和控制的微型气体传感器
  • 批准号:
    1602061
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
GOALI: Modeling and Control of Fluid Dynamics and Ice Formation in Pharmaceutical Freeze-Drying
目标:药物冷冻干燥中流体动力学和冰形成的建模和控制
  • 批准号:
    0829047
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
  • 批准号:
    2337830
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Quantifying climate change impacts for wetlands in agricultural landscapes
量化气候变化对农业景观中湿地的影响
  • 批准号:
    DE240100477
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Early Career Researcher Award
MULTI-STRESS: Quantifying the impacts of multiple stressors in multiple dimensions to improve ecological forecasting
多重压力:在多个维度量化多种压力源的影响,以改进生态预测
  • 批准号:
    NE/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Collaborative Research: BoCP-Implementation: Quantifying the response of biodiverse freshwater ecosystems to abrupt and progressive environmental change
合作研究:BoCP-实施:量化生物多样性淡水生态系统对突然和渐进的环境变化的响应
  • 批准号:
    2325895
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Quantifying Genetic and Ecological Constraints on the Evolution of Thermal Performance Curves
职业:量化热性能曲线演变的遗传和生态约束
  • 批准号:
    2337107
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234522
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234523
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234524
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Quantifying the effect of sediment microbial activity in facilitating silica sequestration during early diagenesis (QUALIFIED)
量化早期成岩过程中沉积物微生物活性对促进二氧化硅固存的影响(合格)
  • 批准号:
    2319429
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Quantifying the benefits of regenerative agricultural practices
量化再生农业实践的好处
  • 批准号:
    BB/Z514342/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了