Collaborative research: Leveraging low-dimensional structure for time series analysis and prediction

合作研究:利用低维结构进行时间序列分析和预测

基本信息

  • 批准号:
    0830320
  • 负责人:
  • 金额:
    $ 22.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Title: Collaborative Research: Leveraging Low-dimensional Structure for Time Series Analysis and PredictionPI: Christopher J. Rozell, Georgia Institute of Technologyco-PI: Michael B. Wakin, University of Michigan, Ann ArborPredicting the behavior of complex systems is central to many tasks of great scientific and national importance, including arenas such as meteorology, financial markets and global conflict. Modern science is ingrained with the premise that repeated observations of a dynamic phenomenon can help in understanding its driving mechanisms and predicting its future behavior. The investigators study methods for improving our ability to characterize and predict such systems even when they are very large (i.e., with many interacting factors) or appear highly unordered (i.e., chaotic systems). This research leverages new mathematical results that enable analysts to efficiently capture the simple structure that is often present even in systems that appear very complex. These results lead to improvements and performance guarantees for heuristic prediction methods based on artificial neural networks, which are often used in practice but can sometimes fail inexplicably.Time series prediction is often approached by postulating a structured model for a hidden system driving data generation. This project borrows from recent advances in low-dimensional signal modeling to advance the state of the art in time series analysis and prediction tools when similar low-dimensional structure is present. For linear systems, this research develops efficient estimation strategies that improve upon classical techniques by encouraging sparse solutions. For nonlinear models, this project builds upon Takens' Embedding Theorem, which states that the image of an attractor manifold can be reconstructed using a sequence of time series observations, to guarantee a quantifiably stable embedding of the attractor manifold. Furthermore, this research aims to improve upon and make performance guarantees for reservoir computing methods, where randomly-connected neural networks have been identified as effective mechanisms for predicting chaotic time series.
标题:合作研究:利用低维结构进行时间序列分析和预测PI:Christopher J.Rozell,佐治亚州理工学院合伙:Michael B.Wakin,密歇根大学Ann Arbor.预测复杂系统的行为对许多具有重大科学和国家重要性的任务至关重要,包括气象、金融市场和全球冲突等领域。现代科学根深蒂固的前提是,对动态现象的反复观察可以帮助理解其驱动机制,并预测其未来的行为。研究人员研究了一些方法,以提高我们描述和预测这类系统的能力,即使这些系统非常大(即,有许多相互作用的因素)或看起来非常无序(即,混沌系统)。这项研究利用了新的数学结果,使分析师能够有效地捕捉到即使在看起来非常复杂的系统中也经常存在的简单结构。这些结果导致了基于人工神经网络的启发式预测方法的改进和性能保证,这些方法在实践中经常使用,但有时会莫名其妙地失败。时间序列预测通常是通过假设驱动数据生成的隐藏系统的结构化模型来实现的。该项目借鉴了低维信号建模的最新进展,在存在类似的低维结构的情况下,提高了时间序列分析和预测工具的技术水平。对于线性系统,这项研究开发了有效的估计策略,通过鼓励稀疏解来改进经典技术。对于非线性模型,这个项目建立在Takens的嵌入定理的基础上,该定理指出,可以使用一系列时间序列观测来重建吸引子流形的图像,以保证吸引子流形的可量化稳定嵌入。此外,本研究旨在改进和保证储集层计算方法的性能,在储集层计算方法中,随机连接神经网络已被确定为预测混沌时间序列的有效机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Wakin其他文献

Michael Wakin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Wakin', 18)}}的其他基金

Collaborative Research: CIF: Medium: Structured Inference and Adaptive Measurement Design in Indirect Sensing Systems
合作研究:CIF:媒介:间接传感系统中的结构化推理和自适应测量设计
  • 批准号:
    2106834
  • 财政年份:
    2021
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Subspace Matching and Approximation on the Continuum
CIF:媒介:协作研究:连续体上的子空间匹配和近似
  • 批准号:
    1409261
  • 财政年份:
    2014
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Tracking low-dimensional information in data streams and dynamical systems
CIF:中:协作研究:跟踪数据流和动力系统中的低维信息
  • 批准号:
    1409258
  • 财政年份:
    2014
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
CAREER: New Models, Representations, and Dimensionality Reduction Techniques for Structured Data Sets
职业:结构化数据集的新模型、表示和降维技术
  • 批准号:
    1149225
  • 财政年份:
    2012
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0603606
  • 财政年份:
    2006
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Fellowship

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HIF-1α调控软骨细胞衰老在骨关节炎进展中的作用及机制研究
  • 批准号:
    82371603
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
  • 批准号:
    82371028
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
  • 批准号:
    82371651
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
  • 批准号:
    82371631
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
  • 批准号:
    82371103
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
骨髓ISG+NAMPT+中性粒细胞介导抗磷脂综合征B细胞异常活化的机制研究
  • 批准号:
    82371799
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
Lienard系统的不变代数曲线、可积性与极限环问题研究
  • 批准号:
    12301200
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
RIPK3蛋白及其RHIM结构域在脓毒症早期炎症反应和脏器损伤中的作用和机制研究
  • 批准号:
    82372167
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
  • 批准号:
    2231254
  • 财政年份:
    2023
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
  • 批准号:
    2231261
  • 财政年份:
    2023
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Standard Grant
Collaborative Research: SPARC: Conducting Collaborative Research and Leveraging Resources to Advance Spatial Archaeometry
协作研究:SPARC:开展协作研究并利用资源推进空间考古学
  • 批准号:
    2309809
  • 财政年份:
    2023
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding the Limitations of Wireless Network Security Designs Leveraging Wireless Properties: New Threats and Defenses in Practice
协作研究:SaTC:核心:小型:了解利用无线特性的无线网络安全设计的局限性:实践中的新威胁和防御
  • 批准号:
    2316720
  • 财政年份:
    2023
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Promoting Children's Learning About Biological Variability by Leveraging Simple Card Games
合作研究:利用简单的纸牌游戏促进儿童了解生物变异性
  • 批准号:
    2300602
  • 财政年份:
    2023
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: Promoting Children's Learning About Biological Variability by Leveraging Simple Card Games
合作研究:利用简单的纸牌游戏促进儿童了解生物变异性
  • 批准号:
    2300604
  • 财政年份:
    2023
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了