CAREER: New Models, Representations, and Dimensionality Reduction Techniques for Structured Data Sets

职业:结构化数据集的新模型、表示和降维技术

基本信息

  • 批准号:
    1149225
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-01 至 2018-04-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT:A significant byproduct of the modern Information Age has been an explosion in the sheer quantity of data demanded from sensing systems. This project focuses on developing effective new frameworks for data acquisition, processing, and understanding that will help meet the technological challenges posed by this ever growing demand for information. Possible areas of impact include, but are not limited to: social choice theory, recommendation engines, sensor networks, computer vision, LIDAR, machine learning, medical imaging, drug discovery, and neuroscience. Integrated with the research in this project are the educational goals to inspire and educate students by creating and disseminating new curricular and K-12 outreach materials that focus both on the challenges of high-dimensional data processing and on the principles behind the dimensionality reduction techniques for alleviating them.The research in this project draws from the concepts of sparsity and geometry in pursuing theoretically sound, integrated models and representations for broad classes of natural data. Of particular interest are (i) pairwise comparison matrices, which arise in a number of applications including recommendation engines, economic exchanges, elections, and psychology but are inadequately captured by low-rank models, and (ii) point clouds, which arise in signal and image databases and sensor networks but for which current models fail to properly capture intra- and inter-signal structures. In order to help mitigate the challenges in collecting and storing high-dimensional data sets (including those above), this project is developing principled techniques for recovering matrix-structured data sets from partial information that exploit far richer models than conventional low-rank recovery techniques.
摘要:现代信息时代的一个重要副产品是传感系统所需数据量的爆炸式增长。该项目的重点是开发有效的数据采集,处理和理解的新框架,这将有助于满足不断增长的信息需求所带来的技术挑战。可能的影响领域包括但不限于:社会选择理论、推荐引擎、传感器网络、计算机视觉、激光雷达、机器学习、医学成像、药物发现和神经科学。结合本项目的研究,教育目标是通过创建和传播新的课程和K-12外展材料来激励和教育学生,这些材料既关注高维数据处理的挑战,又关注降维技术背后的原理,以减轻这些挑战。本项目的研究借鉴了稀疏性和几何学的概念,为广泛的自然数据类别提供集成的模型和表示。特别令人感兴趣的是(i)成对比较矩阵,其出现在许多应用中,包括推荐引擎,经济交易,选举和心理学,但不能被低秩模型充分捕获,以及(ii)点云,其出现在信号和图像数据库以及传感器网络中,但当前模型无法正确捕获信号内和信号间结构。为了帮助减轻收集和存储高维数据集(包括上述数据集)的挑战,该项目正在开发从部分信息中恢复矩阵结构数据集的原则性技术,这些技术利用比传统低秩恢复技术更丰富的模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Wakin其他文献

Michael Wakin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Wakin', 18)}}的其他基金

Collaborative Research: CIF: Medium: Structured Inference and Adaptive Measurement Design in Indirect Sensing Systems
合作研究:CIF:媒介:间接传感系统中的结构化推理和自适应测量设计
  • 批准号:
    2106834
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Subspace Matching and Approximation on the Continuum
CIF:媒介:协作研究:连续体上的子空间匹配和近似
  • 批准号:
    1409261
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Tracking low-dimensional information in data streams and dynamical systems
CIF:中:协作研究:跟踪数据流和动力系统中的低维信息
  • 批准号:
    1409258
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative research: Leveraging low-dimensional structure for time series analysis and prediction
合作研究:利用低维结构进行时间序列分析和预测
  • 批准号:
    0830320
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0603606
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Fellowship

相似海外基金

CAREER: New Algorithms and Models for Turbulence in Incompressible Fluids
职业:不可压缩流体湍流的新算法和模型
  • 批准号:
    2143331
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: New Paradigms of Estimation and Inference in Constrained Nonparametric Models
职业:约束非参数模型中估计和推理的新范式
  • 批准号:
    2143468
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: A new class of microfluidic ex vivo culture models to understand whole organ physiology and disease
职业:一类新型微流体离体培养模型,用于了解整个器官生理学和疾病
  • 批准号:
    1943686
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Establishing New Insights into Uterine Smooth Muscle Cell Mechanobiology with Engineered Tissue Models
职业:利用工程组织模型建立对子宫平滑肌细胞力学生物学的新见解
  • 批准号:
    1944734
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Validating and applying a new class of drift-diffusion models for investigating individual differences in executive control
职业:验证和应用一类新型漂移扩散模型来研究执行控制的个体差异
  • 批准号:
    1650438
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Multidimensional Data Science via New Algebraic Models and Scalable Algorithms
职业:通过新的代数模型和可扩展算法推进多维数据科学
  • 批准号:
    1553075
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: New Models for Controlling InP Nucleation, Growth, and Luminescence using Magic-Sized Clusters and Targeted Surface Chemistry
职业生涯:使用神奇大小的簇和目标表面化学来控制 InP 成核、生长和发光的新模型
  • 批准号:
    1552164
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Bringing richly structured Bayesian models into the discrete-data realm via new data-augmentation theory and algorithms
职业:通过新的数据增强理论和算法将结构丰富的贝叶斯模型引入离散数据领域
  • 批准号:
    1255187
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Automated extraction of vessel data from images to construct new models for vascular networks in plants and animals
职业:从图像中自动提取血管数据,构建植物和动物血管网络的新模型
  • 批准号:
    1254159
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Self-adjusting Models as a New Direction in Machine Learning
职业:自我调整模型作为机器学习的新方向
  • 批准号:
    1252648
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了