Geometric and Combinatorial Algorithms for Optimal Surface Segmentation in Medical Images

医学图像中最佳表面分割的几何和组合算法

基本信息

  • 批准号:
    0830402
  • 负责人:
  • 金额:
    $ 17.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Efficient detection of globally optimal surfaces representing object boundaries in volumetric images is fundamental and remains challenging in modern computer-assisted medical diagnosis and treatment and many other important medical applications. This research deals with specific problems of detecting optimal single and multiple interacting surfaces in volumetric image datasets. It permits identification of optimal surfaces of terrain-like shapes, cylindrical shapes, and complex shapes. Image data sets we consider have various different image features, such as edge, texture, and shape. The essence of these problems is to solve a number of important geometric optimization problems belonging to the fundamental topics of computational geometry, such as surface identification, geometric partitioning, geometric k-means clustering, and metric labeling. The research focus of this project is on developing efficient algorithms and novel techniques for solving these crucial problems with a provably global optimality. The application of geometric and combinatorial techniques to medical problems is intellectually deep and can result in advances in both theoretical computer science and medicine. The proposed image analysis methods allow evaluating the image data objectively in a quantitative manner, promising to substantially impact image-based clinical care. An important goal of this research is dissemination of implemented algorithms in software to application domains. In doing this, it helps to bring together the computer science and the medical community.Intellectual Merit: We expect this project to make a number of theoretical contributions: (1) providing new algorithmic techniques for solving a set of crucial computational problems confronted by current medical research and applications; (2) introducing fresh and theoretically interesting problems and algorithms to geometric and combinatorial optimization, enriching and prodding further development of the field; (3) presenting new challenging problems and new approaches to other theoretical areas such as graph algorithms and operations research, and bringing new applications to these areas.Broader Impacts: The successful completion of this project will result in methodologies that greatly accelerate the pace of 3-D and 4-D medical image processing. The automated image segmentation software will be platform independent and will directly address the needs of a broad base of end users across a wide range of disciplines from basic research to clinical medicine. The proposed image analysis tools will provide clinicians with the means to assess diseased organs in 3-D and 4-D, rather than in 2-D as is typically done in conventional practice. In addition, infusion of the research results into the classroom provides students with a unique opportunity to study and practice in the emerging important interdisciplinary area involving computer science and modern medicine, promotes interdisciplinary learning, and enables the training of more versatile scientists.
在现代计算机辅助医学诊断和治疗以及许多其他重要的医学应用中,有效地检测体积图像中表示对象边界的全局最优表面是基本的,并且仍然具有挑战性。本研究涉及体积图像数据集中检测最佳单个和多个相互作用表面的具体问题。 它允许识别地形形状,圆柱形状和复杂形状的最佳表面。我们考虑的图像数据集具有各种不同的图像特征,例如边缘,纹理和形状。 这些问题的本质是解决一些重要的几何优化问题,属于计算几何的基本主题,如表面识别,几何分割,几何k均值聚类和度量标记。 该项目的研究重点是开发有效的算法和新技术来解决这些关键问题,并具有可证明的全局最优性。 几何和组合技术在医学问题上的应用是智力上的深度,可以导致理论计算机科学和医学的进步。 所提出的图像分析方法允许以定量的方式客观地评估图像数据,有望对基于图像的临床护理产生重大影响。 这项研究的一个重要目标是传播软件中实现的算法到应用领域。学术价值:我们期望这个项目能做出一些理论上的贡献:(1)为解决当前医学研究和应用所面临的一系列关键计算问题提供新的算法技术;(2)为几何优化和组合优化引入新的、理论上有趣的问题和算法,丰富和推动了这一领域的进一步发展;(3)为其他理论领域如图算法和运筹学提出新的具有挑战性的问题和新的方法,并为这些领域带来新的应用。更广泛的影响:本项目的成功完成将产生大大加快3-D和4-D医学图像处理步伐的方法。自动图像分割软件将独立于平台,并将直接满足从基础研究到临床医学的广泛学科的广泛最终用户的需求。所提出的图像分析工具将为临床医生提供在3-D和4-D中评估病变器官的方法,而不是像传统实践中通常做的那样在2-D中。此外,将研究成果注入课堂为学生提供了一个独特的机会,在涉及计算机科学和现代医学的新兴重要跨学科领域进行学习和实践,促进跨学科学习,并培养更多多才多艺的科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaodong Wu其他文献

Anthranilic sulfonamide CCK1/CCK2 dual receptor antagonists I: discovery of CCKR1 selectivity in a previously CCKR2-selective lead series.
邻氨基苯磺酰胺 CCK1/CCK2 双受体拮抗剂 I:在先前的 CCKR2 选择性先导系列中发现 CCKR1 选择性。
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Marna Pippel;B. Allison;Victor K. Phuong;Lina Li;M. Morton;C. Prendergast;Xiaodong Wu;N. Shankley;M. Rabinowitz
  • 通讯作者:
    M. Rabinowitz
Optimal surface segmentation with subvoxel accuracy in spectral domain optical coherence tomography images
谱域光学相干断层扫描图像中具有亚体素精度的最佳表面分割
  • DOI:
    10.1016/b978-0-12-817438-8.00004-3
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Abhay Shah;M. Abràmoff;Xiaodong Wu
  • 通讯作者:
    Xiaodong Wu
The microstructural evolution of aluminum alloy 7055 manufactured by hot thermo-mechanical process
热热机械加工7055铝合金的显微组织演变
  • DOI:
    10.1016/j.jallcom.2019.05.054
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Bin Liao;Xiaodong Wu;Lingfei Cao;Guangjie Huang;Zhengan Wang;Qing Liu
  • 通讯作者:
    Qing Liu
Shelf Cross-Shore Flows under Storm-driven Conditions : Role of 1 Stratification , Shoreline Orientation , and Bathymetry 2 3 4
风暴驱动条件下的陆架跨岸流:1 分层、海岸线方向和测深的作用 2 3 4
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaodong Wu;G. Voulgaris;Nirnimesh Kumar
  • 通讯作者:
    Nirnimesh Kumar
Shelf Cross-Shore Flows under Storm-Driven Conditions: Role of Stratification, Shoreline Orientation, and Bathymetry
风暴驱动条件下的陆架跨岸流:分层、海岸线方向和测深的作用
  • DOI:
    10.1175/jpo-d-17-0090.1
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Xiaodong Wu;G. Voulgaris;Nirnimesh Kumar
  • 通讯作者:
    Nirnimesh Kumar

Xiaodong Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaodong Wu', 18)}}的其他基金

AitF: Collaborative Research: Automated Medical Image Segmentation via Object Decomposition
AitF:协作研究:通过对象分解进行自动医学图像分割
  • 批准号:
    1733742
  • 财政年份:
    2017
  • 资助金额:
    $ 17.81万
  • 项目类别:
    Standard Grant
CAREER: Novel Geometric Techniques for Optimal Surface Detection in Medical Images
职业:用于医学图像中最佳表面检测的新颖几何技术
  • 批准号:
    0844765
  • 财政年份:
    2009
  • 资助金额:
    $ 17.81万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 17.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 17.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
  • 批准号:
    2307573
  • 财政年份:
    2023
  • 资助金额:
    $ 17.81万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
  • 批准号:
    2307571
  • 财政年份:
    2023
  • 资助金额:
    $ 17.81万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
  • 批准号:
    2307572
  • 财政年份:
    2023
  • 资助金额:
    $ 17.81万
  • 项目类别:
    Standard Grant
Combinatorial Algorithms for Parallel and Distributed Computing
并行和分布式计算的组合算法
  • 批准号:
    RGPIN-2020-06789
  • 财政年份:
    2022
  • 资助金额:
    $ 17.81万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Algorithms for Combinatorial Optimization Problems in Networks and Beyond
网络及其他领域组合优化问题的有效算法
  • 批准号:
    RGPIN-2017-03956
  • 财政年份:
    2022
  • 资助金额:
    $ 17.81万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
  • 批准号:
    RGPIN-2020-06423
  • 财政年份:
    2022
  • 资助金额:
    $ 17.81万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for hard quadratic combinatorial optimization problems and linkages with quantum bridge analytics
硬二次组合优化问题的算法以及与量子桥分析的联系
  • 批准号:
    RGPIN-2021-03190
  • 财政年份:
    2022
  • 资助金额:
    $ 17.81万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial problems from the perspective of algorithms and complexity
从算法和复杂度角度看组合问题
  • 批准号:
    RGPIN-2017-04459
  • 财政年份:
    2022
  • 资助金额:
    $ 17.81万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了