AitF: Collaborative Research: Automated Medical Image Segmentation via Object Decomposition
AitF:协作研究:通过对象分解进行自动医学图像分割
基本信息
- 批准号:1733742
- 负责人:
- 金额:$ 39.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Medical image segmentation, the process of dividing a medical image into meaningful objects such as organs, tumors, etc., is a critical tool that allows medical professionals to provide customized medical care to patients. In the past this highly technical, individualized care has required experts to manually analyze the images, a process that is very expensive in both time and money. Over the past decade, enormous technological advances have been made in biomedical imaging, leading to a large amount of new and improved medical data which has created a demand for algorithms which can process this data faster and more thoroughly. Researchers have worked extensively to develop these medical image segmentation algorithms, but current algorithms suffer from the following drawbacks: 1) they do not have the capability of effectively representing diverse shapes of a wide variety of medical objects and/or 2) they require substantial interaction from an expert user. This research will develop a novel medical image segmentation algorithm that can be applied to various types of medical images and will be able to be executed by any user with basic computer literacy. Many important objects will be able to be handled with the same algorithm, such as livers, prostates, and vertebrae. This research allows medical experts to spend less time analyzing a wide variety of medical images and more time directly working with patients. The algorithm will work for any medical imaging object of interest whose shape can be decomposed into a small number of components with a very simple geometric structure. For example, livers may be slightly different from person to person, but almost all livers can be represented as a union of two or three "star-shaped" components. A component is defined to be star-shaped if there is a center point in the component such that the line segment connecting the center to every other point in the component is contained within the object. If the center of a single star-shaped component is known, then the whole component can be very quickly identified by computer algorithms, but as the number of components increases, the simultaneous computation of all the components becomes much more difficult. This research will develop algorithms which can automatically compute the centers of the star-shaped components for many medical imaging objects such as livers, prostates, and vertebrae, and further will develop algorithms that can simultaneously identify all the components for the objects. The result will be a single algorithm that will be applied to many scenarios and can be executed by non-technical users.
医学图像分割,将医学图像分割成有意义的对象(如器官、肿瘤等)的过程,是一个重要的工具,允许医疗专业人员为患者提供定制的医疗护理。 在过去,这种高度技术性的个性化护理需要专家手动分析图像,这一过程在时间和金钱上都非常昂贵。 在过去的十年中,生物医学成像取得了巨大的技术进步,产生了大量新的和改进的医疗数据,这就需要能够更快,更彻底地处理这些数据的算法。 研究人员已经广泛地工作来开发这些医学图像分割算法,但是当前的算法具有以下缺点:1)它们不具有有效地表示各种各样的医学对象的不同形状的能力和/或2)它们需要来自专家用户的大量交互。 本研究将开发一种新的医学图像分割算法,可应用于各种类型的医学图像,并将能够由任何具有基本计算机素养的用户执行。 许多重要的对象将能够用相同的算法处理,如肝脏、前列腺和椎骨。 这项研究使医学专家能够花更少的时间分析各种各样的医学图像,并有更多的时间直接与患者合作。该算法将适用于任何感兴趣的医学成像对象,其形状可以被分解成具有非常简单的几何结构的少量组件。 例如,肝脏可能因人而异,但几乎所有的肝脏都可以表示为两个或三个“星形”组件的联合。 如果元件中有一个中心点,使得将该中心连接到元件中每个其他点的线段包含在对象内,则该元件被定义为星形。 如果已知单个星状部件的中心,那么整个部件可以通过计算机算法非常快速地识别,但是随着部件数量的增加,同时计算所有部件变得更加困难。 本研究将开发能够自动计算肝脏、前列腺和椎骨等许多医学成像对象的星形分量中心的算法,并进一步开发能够同时识别对象的所有分量的算法。 结果将是一个单一的算法,将应用于许多场景,并可以由非技术用户执行。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-scale segmentation using deep graph cuts: Robust lung tumor delineation in MVCBCT
- DOI:10.1109/isbi.2018.8363628
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Xiaodong Wu;Zisha Zhong;J. Buatti;Junjie Bai
- 通讯作者:Xiaodong Wu;Zisha Zhong;J. Buatti;Junjie Bai
Automated macular OCT retinal surface segmentation in cases of severe glaucoma using deep learning
使用深度学习对严重青光眼病例进行自动黄斑 OCT 视网膜表面分割
- DOI:10.1117/12.2611859
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Xie, Hui;Wang, Jui-Kai;Kardon, Randy H.;Garvin, Mona K.;Wu, Xiaodong
- 通讯作者:Wu, Xiaodong
KCB-Net: A 3D knee cartilage and bone segmentation network via sparse annotation.
- DOI:10.1016/j.media.2022.102574
- 发表时间:2022-11
- 期刊:
- 影响因子:10.9
- 作者:Peng, Yaopeng;Zheng, Hao;Liang, Peixian;Zhang, Lichun;Zaman, Fahim;Wu, Xiaodong;Sonka, Milan;Chen, Danny Z.
- 通讯作者:Chen, Danny Z.
Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images
- DOI:10.1364/boe.9.004509
- 发表时间:2018-09-01
- 期刊:
- 影响因子:3.4
- 作者:Shah, Abhay;Zhou, Leixin;Wu, Xiaodong
- 通讯作者:Wu, Xiaodong
Deep segmentation networks predict survival of non-small cell lung cancer
- DOI:10.1038/s41598-019-53461-2
- 发表时间:2019-11-21
- 期刊:
- 影响因子:4.6
- 作者:Baek, Stephen;He, Yusen;Wu, Xiaodong
- 通讯作者:Wu, Xiaodong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaodong Wu其他文献
Anthranilic sulfonamide CCK1/CCK2 dual receptor antagonists I: discovery of CCKR1 selectivity in a previously CCKR2-selective lead series.
邻氨基苯磺酰胺 CCK1/CCK2 双受体拮抗剂 I:在先前的 CCKR2 选择性先导系列中发现 CCKR1 选择性。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:2.7
- 作者:
Marna Pippel;B. Allison;Victor K. Phuong;Lina Li;M. Morton;C. Prendergast;Xiaodong Wu;N. Shankley;M. Rabinowitz - 通讯作者:
M. Rabinowitz
Optimal surface segmentation with subvoxel accuracy in spectral domain optical coherence tomography images
谱域光学相干断层扫描图像中具有亚体素精度的最佳表面分割
- DOI:
10.1016/b978-0-12-817438-8.00004-3 - 发表时间:
2020 - 期刊:
- 影响因子:3.5
- 作者:
Abhay Shah;M. Abràmoff;Xiaodong Wu - 通讯作者:
Xiaodong Wu
The microstructural evolution of aluminum alloy 7055 manufactured by hot thermo-mechanical process
热热机械加工7055铝合金的显微组织演变
- DOI:
10.1016/j.jallcom.2019.05.054 - 发表时间:
2019 - 期刊:
- 影响因子:6.2
- 作者:
Bin Liao;Xiaodong Wu;Lingfei Cao;Guangjie Huang;Zhengan Wang;Qing Liu - 通讯作者:
Qing Liu
Shelf Cross-Shore Flows under Storm-driven Conditions : Role of 1 Stratification , Shoreline Orientation , and Bathymetry 2 3 4
风暴驱动条件下的陆架跨岸流:1 分层、海岸线方向和测深的作用 2 3 4
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xiaodong Wu;G. Voulgaris;Nirnimesh Kumar - 通讯作者:
Nirnimesh Kumar
Shelf Cross-Shore Flows under Storm-Driven Conditions: Role of Stratification, Shoreline Orientation, and Bathymetry
风暴驱动条件下的陆架跨岸流:分层、海岸线方向和测深的作用
- DOI:
10.1175/jpo-d-17-0090.1 - 发表时间:
2018 - 期刊:
- 影响因子:3.5
- 作者:
Xiaodong Wu;G. Voulgaris;Nirnimesh Kumar - 通讯作者:
Nirnimesh Kumar
Xiaodong Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaodong Wu', 18)}}的其他基金
CAREER: Novel Geometric Techniques for Optimal Surface Detection in Medical Images
职业:用于医学图像中最佳表面检测的新颖几何技术
- 批准号:
0844765 - 财政年份:2009
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
Geometric and Combinatorial Algorithms for Optimal Surface Segmentation in Medical Images
医学图像中最佳表面分割的几何和组合算法
- 批准号:
0830402 - 财政年份:2008
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
相似海外基金
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
- 批准号:
2051197 - 财政年份:2020
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1940759 - 财政年份:2019
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
2006206 - 财政年份:2019
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
- 批准号:
1733812 - 财政年份:2018
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
- 批准号:
1854742 - 财政年份:2018
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
- 批准号:
1855760 - 财政年份:2018
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
- 批准号:
1733680 - 财政年份:2018
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1733796 - 财政年份:2017
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Algorithms and Mechanisms for the Distribution Grid
AitF:协作研究:配电网算法和机制
- 批准号:
1733832 - 财政年份:2017
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1733878 - 财政年份:2017
- 资助金额:
$ 39.23万 - 项目类别:
Standard Grant