Regularization Methods for Online Learning

在线学习的正则化方法

基本信息

  • 批准号:
    0830410
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

There are many sequential decision problems which can be appropriately modeled as a repeated game, in which the decision-maker is competing with an adversary. For instance, in the problem of virus detection in a computer network, the aim is to label incoming packets as either clean or infected, while a hacker aims to design infected packets that escape detection. Similar problems arise in other areas of computer security (including spam filtering and detection of denial-of service attacks), in internet search (such as deciding if a highly-linked web page is genuinely authoritative and should have high page rank), and in financial applications (such as portfolio optimization). In these problems, the decision-maker aims to perform almost as well as the best element of some comparison class. Even for decision problems that are not inherently adversarial, it is often appealing to model them in this way, since the assumptions are sufficiently weak that effective learning algorithms for these adversarial settings are very widely applicable. Many of the key algorithmic approaches to online learning problems can be viewed as methods involving regularization, an idea that has its origins in the solution of ill-posed problems, such as statistical estimation problems. This project aims to exploit this regularization viewpoint in the analysis and design of methods for complex online learning problems. In particular, its aims are (1) To develop techniques for decision problems with limited feedback. (2) To develop techniques for decision problems with complex losses that cannot be simply decomposed into a sum across trials. (3) To develop efficient learning algorithms that can simultaneously compete effectively with a variety of rich comparison classes and a variety of constraints on the adversary. (4) To improve our understanding of the relationships between online decision problems (in adversarial settings) and statistical decision problems (in probabilistic settings). Successful research outcomes of this project are likely to increase our understanding of complex sequential decision problems and to provide design methodologies for effective learning algorithms for these problems, and hence have a significant potential for practical impact in many application areas, including computer security and computational finance.
有许多连续的决策问题,可以适当地建模为一个重复的游戏,其中决策者是竞争对手。例如,在计算机网络中的病毒检测问题中,目标是将传入的数据包标记为干净或感染,而黑客的目标是设计逃避检测的感染数据包。 类似的问题也出现在计算机安全的其他领域(包括垃圾邮件过滤和拒绝服务攻击的检测),互联网搜索(例如决定一个高度链接的网页是否真正具有权威性,是否应该具有高页面排名)以及金融应用程序(例如投资组合优化)。 在这些问题中,决策者的目标是执行几乎以及一些比较类的最佳元素。 即使对于那些本身并不具有对抗性的决策问题,以这种方式对它们进行建模也常常很有吸引力,因为这些假设足够弱,以至于针对这些对抗性设置的有效学习算法非常广泛地适用。在线学习问题的许多关键算法方法可以被视为涉及正则化的方法,这一思想起源于解决不适定问题,如统计估计问题。这个项目的目的是利用这种正则化的观点在复杂的在线学习问题的方法的分析和设计。 特别是,它的目标是(1)开发有限反馈决策问题的技术。 (2)开发技术,用于解决复杂损失的决策问题,这些复杂损失不能简单地分解为多个试验的总和。 (3)开发高效的学习算法,可以同时有效地与各种丰富的比较类和对手的各种约束进行竞争。 (4)提高我们对在线决策问题(在对抗环境中)和统计决策问题(在概率环境中)之间关系的理解。该项目的成功研究成果可能会增加我们对复杂序贯决策问题的理解,并为这些问题提供有效学习算法的设计方法,因此在许多应用领域,包括计算机安全和计算金融,具有重要的实际影响潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Bartlett其他文献

Mathematical Foundations of Machine Learning
机器学习的数学基础
  • DOI:
    10.4171/owr/2021/15
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Bartlett;Cristina Butucea;Johannes Schmidt
  • 通讯作者:
    Johannes Schmidt
Minimax Fixed-Design Linear Regression
极小极大固定设计线性回归
Sex and Capacity: Introduction to Special Edition of the Liverpool Law Review
  • DOI:
    10.1007/s10991-010-9074-9
  • 发表时间:
    2010-10-22
  • 期刊:
  • 影响因子:
    0.300
  • 作者:
    Peter Bartlett
  • 通讯作者:
    Peter Bartlett
Mental health law in the community: thinking about Africa
Articulating future directions of law reform for compulsory mental health admission and treatment in Hong Kong
  • DOI:
    10.1016/j.ijlp.2019.101513
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daisy Cheung;Michael Dunn;Elizabeth Fistein;Peter Bartlett;John McMillan;Carole J. Petersen
  • 通讯作者:
    Carole J. Petersen

Peter Bartlett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Bartlett', 18)}}的其他基金

Conference: Women-in-Theory Workshop
会议:女性理论研讨会
  • 批准号:
    2227705
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaboration on the Theoretical Foundations of Deep Learning
深度学习理论基础的合作
  • 批准号:
    2031883
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Foundations of Data Science Institute
数据科学研究所基础
  • 批准号:
    2023505
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
RI: AF: Small: Optimizing probabilities for learning: sampling meets optimization
RI:AF:小:优化学习概率:采样满足优化
  • 批准号:
    1909365
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
RI: AF: Small: Deep Learning Theory
RI:AF:小:深度学习理论
  • 批准号:
    1619362
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MCS: AF: Small: Algorithms for Large Scale Prediction Problems
MCS:AF:小型:大规模预测问题的算法
  • 批准号:
    1115788
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Statistical Methods for Prediction of Individual Sequences
预测个体序列的统计方法
  • 批准号:
    0707060
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
MSPA-MCS: Collaborative Research: Statistical Learning Methods for Complex Decision Problems in Natural Language Processing
MSPA-MCS:协作研究:自然语言处理中复杂决策问题的统计学习方法
  • 批准号:
    0434383
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Applying methods & lessons learned from online illicit trade detection to CSA text links
使用方法
  • 批准号:
    10070472
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Developing a toolkit and online learning module for methods to engage stakeholders in participatory analysis of data and interpretation of research evidence
开发工具包和在线学习模块,用于让利益相关者参与数据的参与式分析和研究证据的解释
  • 批准号:
    484593
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship Programs
Understanding New Brunswick citizens' experiences and perceptions of MyHealthNB and accessing their personal health information online: A mixed methods evaluation
了解新不伦瑞克省公民对 MyHealthNB 的体验和看法并在线访问他们的个人健康信息:混合方法评估
  • 批准号:
    495305
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
IMR: MM-1C: Enabling Continual Passive Estimation of Performance of Internet Transfers: Online Measurement and Classification Methods
IMR:MM-1C:实现互联网传输性能的持续被动估计:在线测量和分类方法
  • 批准号:
    2319511
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Developing and Testing an Online Intervention for Decreasing Alcohol and Cannabis Misuse and Increasing Healthy Relationship Skills among Young Adult Couples: A Comprehensive Mixed-Methods Approach
开发和测试减少酒精和大麻滥用并提高年轻成年夫妇健康关系技能的在线干预措施:综合混合方法
  • 批准号:
    10721594
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Online Desision Making Methods for Various Problems and Criteria
针对各种问题和标准的在线决策方法
  • 批准号:
    22H03649
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: SaTC: CORE: Medium: Methods and Tools for Effective, Auditable, and Interpretable Online Ad Transparency
协作研究:SaTC:核心:媒介:有效、可审核和可解释的在线广告透明度的方法和工具
  • 批准号:
    2149680
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Standardization of skill assessment indices suitable for online environments and realization of reliable skill assessment methods
适合网络环境的技能评估指标标准化,实现可靠的技能评估方法
  • 批准号:
    22K18642
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Exploring effective teaching methods for young instrumental music students enrolled in one-to-one synchronous online lessons
探索青少年器乐学生一对一同步网课的有效教学方法
  • 批准号:
    2732711
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Mixed methods pilot feasibility study of an online peer navigation intervention for youth with childhood-onset disabilities
对患有儿童期残疾的青少年进行在线同伴导航干预的混合方法试点可行性研究
  • 批准号:
    475414
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了