Learning and Adapting to Spatio-Temporal Anomalies
学习和适应时空异常
基本信息
- 批准号:0830490
- 负责人:
- 金额:$ 56.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Anomaly detection is essential for a broad range of security, surveillance, and monitoring problems in areas ranging from health care and environmental protection to homeland security and manufacturing. However, because of the increasing complexity of systems and data, as well as the increasing sophistication of adversaries, traditional methods of anomaly detection are no longer sufficient. These methods assume that anomalies look substantially different from normal measurements, or that their characteristics remain constant over time. In many practical applications of interest, however, anomalies are only distinguished by subtle spatio-temporal characteristics. For example, a network security event may involve a sequence of traffic patterns, each of which is innocuous in its own right, but which occupy a localized or lower-dimensional spatial domain when viewed together. Alternatively, anomalies may exhibit temporal structure caused by a slow but steady drift from normal to abnormal behavior. This project develops new theoretical and algorithmic approaches to detecting such spatio-temporal anomalies. The research will impact the monitoring of a wide range of critical infrastructures and application domains, including environmental systems, health care networks, power grids, and communication networks.The project focuses on spatio-temporal anomalies that (1) have significant spatial overlap with the nominal distribution, (2) are distributed on a manifold of lower dimension than nominal measurements, and (3) have time-varying distributional characteristics. The research applies and extends techniques from statistical machine learning, including transductive, manifold-adaptive, and online learning, to the anomaly detection setting. This framework allows the investigators to address several difficult and long-standing challenges such as optimal tracking of drifting anomaly distributions and efficient relaxations of combinatorial graph-based inference algorithms.
异常检测对于从医疗保健和环境保护到国土安全和制造业等领域的广泛安全,监视和监控问题至关重要。然而,由于系统和数据的日益复杂,以及对手的日益复杂,传统的异常检测方法不再足够。这些方法假设异常看起来与正常测量有很大不同,或者它们的特征随时间保持不变。然而,在许多感兴趣的实际应用中,异常仅通过细微的时空特征来区分。例如,网络安全事件可能涉及一系列流量模式,每个流量模式本身都是无害的,但是当一起查看时,它们占据局部或低维空间域。或者,异常可能表现出由从正常到异常行为的缓慢但稳定的漂移引起的时间结构。该项目开发了新的理论和算法方法来检测这种时空异常。该研究将影响广泛的关键基础设施和应用领域的监测,包括环境系统,医疗保健网络,电网和通信网络。该项目侧重于时空异常,(1)与标称分布有显着的空间重叠,(2)分布在比标称测量低维的流形上,(3)分布在比标称测量低维的流形上,(4)分布在比标称测量低维的流形上,(5)分布在比标称测量低维的流形上。(3)具有时变分布特征。该研究应用并扩展了从统计机器学习(包括转导,流形自适应和在线学习)到异常检测设置的技术。该框架允许研究人员解决几个困难和长期存在的挑战,如漂移异常分布的最佳跟踪和基于图的组合推理算法的有效放松。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clayton Scott其他文献
Multiclass Domain Generalization
多类域泛化
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Deshmukh;Srinagesh Sharma;James W. Cutler;Clayton Scott - 通讯作者:
Clayton Scott
The Nested Structure of Cancer Symptoms
癌症症状的嵌套结构
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:1.7
- 作者:
S. Bhavnani;G. Bellala;Arunkumaar Ganesan;Rajeev Krishna;Paul R. Saxman;Clayton Scott;Maria J. Silveira;Charles W. Given - 通讯作者:
Charles W. Given
Multilabel proportion prediction and out-of-distribution detection on gamma spectra of short-lived fission products
- DOI:
10.1016/j.anucene.2024.110777 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Alan Van Omen;Tyler Morrow;Clayton Scott;Elliott Leonard - 通讯作者:
Elliott Leonard
Clayton Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clayton Scott', 18)}}的其他基金
Collaborative Research: CIF: Small: Learning from Multiple Biased Sources
合作研究:CIF:小型:从多个有偏见的来源学习
- 批准号:
2008074 - 财政年份:2020
- 资助金额:
$ 56.43万 - 项目类别:
Standard Grant
BIGDATA: F: Random and Adaptive Projections for Scalable Optimization and Learning
BIGDATA:F:用于可扩展优化和学习的随机和自适应预测
- 批准号:
1838179 - 财政年份:2019
- 资助金额:
$ 56.43万 - 项目类别:
Standard Grant
CIF: Small: Weakly Supervised Learning
CIF:小:弱监督学习
- 批准号:
1422157 - 财政年份:2014
- 资助金额:
$ 56.43万 - 项目类别:
Standard Grant
CIF: Small: Distribution-Adaptive Prediction and Classification
CIF:小型:分布自适应预测和分类
- 批准号:
1217880 - 财政年份:2012
- 资助金额:
$ 56.43万 - 项目类别:
Standard Grant
相似海外基金
Identifying potential trade-offs of adapting to climate change
确定适应气候变化的潜在权衡
- 批准号:
DP240100230 - 财政年份:2024
- 资助金额:
$ 56.43万 - 项目类别:
Discovery Projects
CAREER: Adapting the Fluid Projection Method to Model Elasto-plastic Materials
职业:采用流体投影方法来模拟弹塑性材料
- 批准号:
2427204 - 财政年份:2024
- 资助金额:
$ 56.43万 - 项目类别:
Continuing Grant
Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
- 批准号:
24K16962 - 财政年份:2024
- 资助金额:
$ 56.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CCI Phase I: NSF Center for Adapting Flaws into Features
CCI 第一阶段:NSF 缺陷调整中心
- 批准号:
2413590 - 财政年份:2024
- 资助金额:
$ 56.43万 - 项目类别:
Standard Grant
Adapting a casting winch for a non-stop wave propelled USV
为不间断波浪推进 USV 配备铸造绞车
- 批准号:
10054318 - 财政年份:2023
- 资助金额:
$ 56.43万 - 项目类别:
CR&D Bilateral
Addressing fear of cancer recurrence in parents of pediatric cancer survivors: adapting the Fear Of Recurrence Therapy (FORT) for parents and establishing acceptability and feasibility.
解决儿科癌症幸存者父母对癌症复发的恐惧:为父母调整恐惧复发疗法(FORT)并建立可接受性和可行性。
- 批准号:
488491 - 财政年份:2023
- 资助金额:
$ 56.43万 - 项目类别:
Operating Grants
Development of new soybean ecotype adapting climate change.
适应气候变化的大豆新生态型开发。
- 批准号:
23K05168 - 财政年份:2023
- 资助金额:
$ 56.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Producing more with less adapting high yielding barley varieties to low input agriculture
让高产大麦品种适应低投入农业,少花钱多产
- 批准号:
BB/Y513672/1 - 财政年份:2023
- 资助金额:
$ 56.43万 - 项目类别:
Training Grant
Adapting Treatment Delivery to Improve Retention in Evidence-Based PTSD Treatment
调整治疗方式以提高循证 PTSD 治疗的保留率
- 批准号:
10539602 - 财政年份:2023
- 资助金额:
$ 56.43万 - 项目类别:
Adapting and Scaling the Biotinkering Approach through a CoP Model
通过 CoP 模型调整和扩展生物修复方法
- 批准号:
10666229 - 财政年份:2023
- 资助金额:
$ 56.43万 - 项目类别: