Collaborative Research: CIF: Small: Learning from Multiple Biased Sources

合作研究:CIF:小型:从多个有偏见的来源学习

基本信息

项目摘要

The field of artificial intelligence, and especially machine learning, is concerned with automating the performance of a task by learning from past performances of that task. Examples include classifying images and successfully navigating a maze. Classical machine learning methods assume that past occurrences of a task, or “training data,” accurately represent future occurrences of the task. In many applications, however, training data are drawn from multiple sources that reflect future occurrences with varying degrees of quality. Examples include images labeled by crowd-sourced users or navigation of randomly simulated mazes. The objective of this project is to develop theoretical foundations of learning from multiple biased sources. The work will be motivated by applications in crowdsourcing and autonomous navigation as described above, as well as in video surveillance and nuclear threat detection. This research will support the cross-disciplinary development of a diverse cohort of PhD and undergraduate students at the University of Michigan and at Boston University.To achieve these goals, the investigators will establish theoretical foundations for four broad classes of machine learning problems for which virtually no theory presently exists: (1) Classification from multiple corrupted sources, (2) Clustering with overlapping, nonparametric clusters, (3) Sim2Real reinforcement learning, and (4) Zero-shot learning. This project's theoretical contributions will take the form of generalization error bounds, regret bounds, and sample complexity bounds, while also emphasizing distribution free or general nonparametric models wherever possible. To address the challenges of eliciting and aggregating biased information from multiple sources, the analyses will develop new technical tools, including weighted Rademacher complexity, regret analysis from biased bandit feedback, and oracle inequalities for density estimation, that are likely to find application in other learning settings. The research resulting from this effort will highlight distinctive features of learning from multiple sources, including various questions associated with multiple sample sizes. More generally, the research develops principled approaches for integrating heterogeneous data sources in both batch and sequential learning settings and under a variety of inter-source dependence models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能领域,特别是机器学习,关注的是通过从任务的过去表现中学习来自动执行该任务。例子包括分类图像和成功地导航迷宫。经典的机器学习方法假设任务的过去发生,或“训练数据”,准确地表示任务的未来发生。然而,在许多应用中,训练数据是从多个来源提取的,这些来源反映了未来发生的具有不同质量程度的事件。例子包括由众包用户标记的图像或随机模拟迷宫的导航。这个项目的目标是发展从多个有偏见的来源学习的理论基础。这项工作将受到上述众包和自主导航以及视频监控和核威胁检测应用的推动。这项研究将支持密歇根大学和波士顿大学的博士生和本科生的跨学科发展。为了实现这些目标,研究人员将为四大类机器学习问题建立理论基础,目前几乎没有理论存在:(1)从多个损坏的源进行分类,(2)使用重叠的非参数聚类进行聚类,(3)Sim 2 Real强化学习,以及(4)Zero-shot学习。该项目的理论贡献将采取推广误差界,遗憾界和样本复杂性界的形式,同时也强调分布自由或一般非参数模型。为了解决从多个来源引出和聚合有偏见的信息的挑战,分析将开发新的技术工具,包括加权Rademacher复杂性,有偏见的强盗反馈的遗憾分析,以及密度估计的Oracle不等式,这些都可能在其他学习环境中找到应用。这项工作所产生的研究将突出从多个来源学习的独特特征,包括与多个样本量相关的各种问题。更一般地说,该研究开发了原则性的方法,用于在批处理和顺序学习环境中以及在各种源间依赖模型下集成异构数据源。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An exact solver for the Weston-Watkins SVM subproblem
  • DOI:
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yutong Wang;C. Scott
  • 通讯作者:
    Yutong Wang;C. Scott
VC dimension of partially quantized neural networks in the overparametrized regime
  • DOI:
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yutong Wang;C. Scott
  • 通讯作者:
    Yutong Wang;C. Scott
Consistent Estimation of Identifiable Nonparametric Mixture Models from Grouped Observations
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Ritchie;Robert A. Vandermeulen;C. Scott
  • 通讯作者:
    Alexander Ritchie;Robert A. Vandermeulen;C. Scott
Weston-Watkins Hinge Loss and Ordered Partitions
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yutong Wang;C. Scott
  • 通讯作者:
    Yutong Wang;C. Scott
Learning from Label Proportions by Learning with Label Noise
  • DOI:
    10.48550/arxiv.2203.02496
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianxin Zhang;Yutong Wang;C. Scott
  • 通讯作者:
    Jianxin Zhang;Yutong Wang;C. Scott
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clayton Scott其他文献

Multiclass Domain Generalization
多类域泛化
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Deshmukh;Srinagesh Sharma;James W. Cutler;Clayton Scott
  • 通讯作者:
    Clayton Scott
The Nested Structure of Cancer Symptoms
癌症症状的嵌套结构
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    S. Bhavnani;G. Bellala;Arunkumaar Ganesan;Rajeev Krishna;Paul R. Saxman;Clayton Scott;Maria J. Silveira;Charles W. Given
  • 通讯作者:
    Charles W. Given
Multilabel proportion prediction and out-of-distribution detection on gamma spectra of short-lived fission products
  • DOI:
    10.1016/j.anucene.2024.110777
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alan Van Omen;Tyler Morrow;Clayton Scott;Elliott Leonard
  • 通讯作者:
    Elliott Leonard

Clayton Scott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clayton Scott', 18)}}的其他基金

BIGDATA: F: Random and Adaptive Projections for Scalable Optimization and Learning
BIGDATA:F:用于可扩展优化和学习的随机和自适应预测
  • 批准号:
    1838179
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Small: Weakly Supervised Learning
CIF:小:弱监督学习
  • 批准号:
    1422157
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Small: Distribution-Adaptive Prediction and Classification
CIF:小型:分布自适应预测和分类
  • 批准号:
    1217880
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Guided Sensing
职业:引导传感
  • 批准号:
    0953135
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Learning and Adapting to Spatio-Temporal Anomalies
学习和适应时空异常
  • 批准号:
    0830490
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了