CAREER: Guided Sensing

职业:引导传感

基本信息

项目摘要

In many complex problems related to discovery, detection, and diagnosis, researchers and practitioners alike are continually faced with the question ?What data should I gather next?? When the possibilities for data collection are overwhelming, and experiments or measurements are costly or time-consuming, this question becomes all the more critical.This research investigates guided sensing algorithms, which make recommendations about the next measurements to gather, with the understanding that a domain expert makes the final decision. Motivated by applications in emergency response and high-throughput cell-based analysis, this work develops new methods for guided sensing that account for temporal and task-based constraints, missing data, and environmental noise as well as human error.The research makes two primary technical contributions. First, it generalizes classical query-based learning algorithms to be robust to noise, with input and output designed to match users? needs. To accomplish this, greedy decision tree algorithms are designed with respect to new performance measures that reflect task-specific objectives and constraints. Second, this work develops interactive, nonparametric methods for statistical matching, a fundamental problem in data fusion. The approach is grounded in new methods for nonparametric clustering with missing data, and for unsupervised sequential experimental design.
在许多与发现、检测和诊断相关的复杂问题中,研究人员和从业人员都不断面临着这样的问题:接下来我应该收集哪些数据?当数据收集的可能性是压倒性的,实验或测量是昂贵的或耗时的,这个问题变得更加critical.This研究调查引导传感算法,它使有关收集下一个测量的建议,理解领域专家作出最终决定。受应急响应和基于细胞的高通量分析应用的启发,这项工作开发了新的方法,用于指导传感,占时间和基于任务的约束,丢失的数据,环境噪声以及人为错误。首先,它概括了经典的基于查询的学习算法是强大的噪音,输入和输出的设计,以匹配用户?需求为了实现这一点,贪婪决策树算法的设计方面的新的性能指标,反映特定任务的目标和约束。其次,这项工作开发了交互式的,非参数的统计匹配方法,在数据融合的一个基本问题。该方法是基于新的方法,非参数聚类与缺失数据,和无监督的序贯实验设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clayton Scott其他文献

Multiclass Domain Generalization
多类域泛化
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Deshmukh;Srinagesh Sharma;James W. Cutler;Clayton Scott
  • 通讯作者:
    Clayton Scott
The Nested Structure of Cancer Symptoms
癌症症状的嵌套结构
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    S. Bhavnani;G. Bellala;Arunkumaar Ganesan;Rajeev Krishna;Paul R. Saxman;Clayton Scott;Maria J. Silveira;Charles W. Given
  • 通讯作者:
    Charles W. Given
Multilabel proportion prediction and out-of-distribution detection on gamma spectra of short-lived fission products
  • DOI:
    10.1016/j.anucene.2024.110777
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alan Van Omen;Tyler Morrow;Clayton Scott;Elliott Leonard
  • 通讯作者:
    Elliott Leonard

Clayton Scott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clayton Scott', 18)}}的其他基金

Collaborative Research: CIF: Small: Learning from Multiple Biased Sources
合作研究:CIF:小型:从多个有偏见的来源学习
  • 批准号:
    2008074
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
BIGDATA: F: Random and Adaptive Projections for Scalable Optimization and Learning
BIGDATA:F:用于可扩展优化和学习的随机和自适应预测
  • 批准号:
    1838179
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CIF: Small: Weakly Supervised Learning
CIF:小:弱监督学习
  • 批准号:
    1422157
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CIF: Small: Distribution-Adaptive Prediction and Classification
CIF:小型:分布自适应预测和分类
  • 批准号:
    1217880
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Learning and Adapting to Spatio-Temporal Anomalies
学习和适应时空异常
  • 批准号:
    0830490
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

FMSG: Cyber: Toward Future Underwater Additive Manufacturing of Bio-Based Construction Materials Through AI-Guided Sensing and Material Modeling
FMSG:网络:通过人工智能引导的传感和材料建模迈向未来生物基建筑材料的水下增材制造
  • 批准号:
    2328188
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Long-range guided surface waves with transverse spin and subwavelength confinement for optical switching and sensing
具有横向自旋和亚波长限制的长程引导表面波,用于光学开关和传感
  • 批准号:
    21H01383
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
PileSense - Innovative ultra-sonic guided wave technology for intelligent sensing of defects in steel sheet pile infrastructure
PileSense - 创新的超声波导波技术,用于智能传感钢板桩基础设施中的缺陷
  • 批准号:
    74207
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Feasibility Studies
EAGER: Collaborative Research:III: Exploring Physics Guided Machine Learning for Accelerating Sensing and Physical Sciences
EAGER:协作研究:III:探索物理引导机器学习以加速传感和物理科学
  • 批准号:
    2026710
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: III: Exploring Physics Guided Machine Learning for Accelerating Sensing and Physical Sciences
EAGER:协作研究:III:探索物理引导机器学习以加速传感和物理科学
  • 批准号:
    2026703
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: III: Exploring Physics Guided Machine Learning for Accelerating Sensing and Physical Sciences
EAGER:协作研究:III:探索物理引导机器学习以加速传感和物理科学
  • 批准号:
    2026704
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: III: Exploring Physics Guided Machine Learning for Accelerating Sensing and Physical Sciences
EAGER:协作研究:III:探索物理引导机器学习以加速传感和物理科学
  • 批准号:
    2026702
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
PileSense - Innovative ultra-sonic guided wave technology for intelligent sensing of defects in steel sheet pile infrastructure
PileSense - 创新的超声波导波技术,用于智能传感钢板桩基础设施中的缺陷
  • 批准号:
    104362
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative R&D
RI: Medium: Active Sensing, Localization, and Mapping in Dynamic Deformable Environments for Image-Guided Interventions
RI:中:动态可变形环境中的主动传感、定位和绘图,用于图像引导干预
  • 批准号:
    1563805
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Quantum dot/nitroxide-based sensing platform for image-guided drug delivery in cancer
基于量子点/硝基氧的传感平台,用于癌症中图像引导药物输送
  • 批准号:
    24510321
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了