New Directions in Semidefinite Programming and Approximation
半定规划和逼近的新方向
基本信息
- 批准号:0830673
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computing approximate solutions to NP-hard optimization problems is an idea that is attractive both in theory and practice. Semidefinite programming (SDP) has become an indispensable tool in this area. It has led to new and better algorithms, and recently, thanks in part to the PI's prior work, more combinatorial algorithms that actually avoid SDP. The connections of SDP to high-dimensional geometry, metric embeddings, fourier transforms, and probabilistically checkable proofs are also at the center of some of the exciting work in theoretical computer science in recent years.The project will work on ideas to (a) apply SDP to design new approximation algorithms for a host of problems, such as graph coloring, metric traveling salesman, graph partitioning, vertex cover; (b) use insights from SDP to design efficient combinatorial algorithms; (c) apply SDP insights (and a ``constructive'' version of SDP duality discovered recently by the PI and his student) to new settings such as decoding error-correcting codes, compressed sensing, and analysing network algorithms and swarm algorithms; (d) explore connections between SDPs, high-dimensional geometry, fourier transforms, and probabilistically checkable proofs.SDP-inspired primal-dual approaches are an important new extension of traditional approaches based upon linear-programming duality, and developing their uses promises to have transformative impact. Development of new approximation algorithms for central problems like graph partitioning and metric TSP may also transform the field.During this project new courses will be designed at the undergraduate and graduate level to teach these new ideas in an accessible way.
计算NP难优化问题的近似解是一个在理论和实践上都很有吸引力的想法。 半定规划(SDP)已成为这一领域不可或缺的工具。它导致了新的和更好的算法,最近,部分归功于PI的先前工作,更多的组合算法实际上避免了SDP。SDP与高维几何、度量嵌入、傅立叶变换和概率可检验证明的联系也是近年来理论计算机科学中一些令人兴奋的工作的中心。该项目将致力于以下想法:(a)应用SDP为许多问题设计新的逼近算法,例如图着色、度量旅行商、图分区、顶点覆盖;(B)使用SDP的见解来设计有效的组合算法;(c)应用SDP见解(以及PI和他的学生最近发现的SDP对偶的“构造”版本)到新的设置,如解码纠错码,压缩传感,分析网络算法和群算法;(d)探索SDP、高维几何、傅立叶变换和概率可检验证明之间的联系。SDP启发的原始-对偶方法是基于线性规划对偶的传统方法的重要新扩展,并开发其用途有望产生变革性的影响。开发新的近似算法的中心问题,如图分割和度量TSP也可能改变该领域。在这个项目中,新的课程将设计在本科生和研究生水平,以方便的方式教授这些新的想法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjeev Arora其他文献
Acceso a la asistencia: Manejo de la infección por el virus de la hepatitis C en lugares remotos
获取帮助: 丙型肝炎病毒感染的说明
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Sanjeev Arora;Karla Thornton;Andrea Bradford - 通讯作者:
Andrea Bradford
Project ECHO for Cancer Care: a Scoping Review of Provider Outcome Evaluations
癌症护理 ECHO 项目:对提供者结果评估的范围审查
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.6
- 作者:
Sanjeev Arora;Heidi Rishel Brakey;Jessica L Jones;Nancy Hood;Jesus E. Fuentes;Lucca Cirolia - 通讯作者:
Lucca Cirolia
Polynomial time approximation schemes for Euclidean TSP and other geometric problems
- DOI:
10.1109/sfcs.1996.548458 - 发表时间:
1996-10 - 期刊:
- 影响因子:0
- 作者:
Sanjeev Arora - 通讯作者:
Sanjeev Arora
Computational Complexity and Information Asymmetry in Financial Products (Extended Abstract)
金融产品中的计算复杂性和信息不对称(扩展摘要)
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Sanjeev Arora;B. Barak;Markus K. Brunnermeier;Rong Ge - 通讯作者:
Rong Ge
Keeping LLMs Aligned After Fine-tuning: The Crucial Role of Prompt Templates
微调后保持法学硕士的一致性:提示模板的关键作用
- DOI:
10.48550/arxiv.2402.18540 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kaifeng Lyu;Haoyu Zhao;Xinran Gu;Dingli Yu;Anirudh Goyal;Sanjeev Arora - 通讯作者:
Sanjeev Arora
Sanjeev Arora的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjeev Arora', 18)}}的其他基金
Collaborative Research: RI:Medium:MoDL:Mathematical and Conceptual Understanding of Large Language Models
合作研究:RI:Medium:MoDL:大型语言模型的数学和概念理解
- 批准号:
2211779 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
AF: Large: Collaborative Research: Nonconvex Methods and Models for Learning: Toward Algorithms with Provable and Interpretable Guarantees
AF:大型:协作研究:非凸学习方法和模型:具有可证明和可解释保证的算法
- 批准号:
1704860 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
AF: Small: Linear Algebra++ and applications to machine learning
AF:小:线性代数及其在机器学习中的应用
- 批准号:
1527371 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
AF: Medium: Towards Provable Bounds for Machine Learning
AF:中:迈向机器学习的可证明界限
- 批准号:
1302518 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
AF: Small: Expansion, Unique Games, and Efficient Algorithms
AF:小:扩展、独特的游戏和高效的算法
- 批准号:
1117309 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Understanding, Coping with, and Benefiting from Intractibility.
合作研究:理解、应对棘手问题并从中受益。
- 批准号:
0832797 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
New directions in Approximation Algorithms for NP-hard problems
NP 难题近似算法的新方向
- 批准号:
0514993 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: MSPA-MCS: Embeddings of Finite Metric Spaces - A Geometric Approach to Efficient Algorithms
合作研究:MSPA-MCS:有限度量空间的嵌入 - 高效算法的几何方法
- 批准号:
0528414 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
ITR: New directions in clustering and learning
ITR:聚类和学习的新方向
- 批准号:
0205594 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Approximation of NP-Hard Problems: Algorithms and Complexity
NP 难问题的近似:算法和复杂性
- 批准号:
0098180 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
- 批准号:
10083223 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Knowledge Transfer Network
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306379 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
- 批准号:
2342550 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
- 批准号:
2314385 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




