Development and implementation of numerical algorithm for variational methods and generalized gradient flows for geometric evolution problems of higher order for surface processing in computer graphics

计算机图形学表面处理高阶几何演化问题的变分法和广义梯度流数值算法的开发和实现

基本信息

  • 批准号:
    190140394
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Fellowships
  • 财政年份:
    2010
  • 资助国家:
    德国
  • 起止时间:
    2009-12-31 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

The main goal of the research project in the research group of Prof. Mathieu Desbrun at the California Institute of Technology (Caltech) in Pasadena, USA, will be the development and implementation of numerical algorithms for evolution problems of the anisotropic Willmore in the context of anisotropic surface fairing and surface restoration. The application includes blending problems, where different surface patches are connected by other surface patches defined as minimizers of the anisotropic Willmore functional. Besides blending problems surface restorations problems are considered. There, a destroyed region of a surface is replaced by a surface patch that restores the surface in a suitable way. In particular one ask for C1-condition at the patch boundary. Since the L2-gradient flow of the anisotropic Willmore functional corresponds to a highly non linear parabolic partial differential equation, this functional is well suited for this kind of restoration problems. Choosing a different metric, e.g. the H^1-metric instead of the L2-metric, generalized gradient flows are considered.
美国帕萨迪纳市加州理工学院Mathieu Desbrun教授研究小组的主要研究目标是在各向异性表面光顺和表面恢复的背景下,开发和实现各向异性Willmore演化问题的数值算法。该应用程序包括混合问题,不同的表面补丁连接的其他表面补丁定义为各向异性Willmore功能的极小化。除了混合问题,表面处理问题也被考虑。在那里,曲面的受损区域被曲面片替换,该曲面片以适当的方式恢复曲面。特别地,要求在面片边界处满足C1条件。由于各向异性Willmore泛函的L2-梯度流对应于一个高度非线性的抛物型偏微分方程,该泛函非常适合于这类恢复问题。选择一个不同的度量,例如H^1-度量而不是L2-度量,考虑广义梯度流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Nadine Olischläger其他文献

Dr. Nadine Olischläger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Elucidation of the mechanism of particle suspension in debris flows focusing on flow stratification and its implementation in a numerical model
以流动分层为重点的泥石流中颗粒悬浮机制的阐明及其在数值模型中的实现
  • 批准号:
    22K14452
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Numerical implementation of correction method for the Ewald Sphere curvature
埃瓦尔德球曲率校正方法的数值实现
  • 批准号:
    563619-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Theory and implementation of probabilistic numerical methods
概率数值方法的理论与实现
  • 批准号:
    20K22301
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Study on algorithms of numerical methods for large scale nonlinear optimization problems and their implementation
大规模非线性优化问题数值方法算法研究及其实现
  • 批准号:
    20K11698
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and numerical implementation of a Levelized Cost of Energy (LCoE) model for Floating Offshore Wind Turbines, for and optimisation framewor
浮动式海上风力发电机平准化能源成本 (LCoE) 模型的开发和数值实施,以及优化框架
  • 批准号:
    2515675
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Cross-cortical implementation of spatial-numerical associations revealed by transcranial direct current stimulation and near-infrared-spectroscopy
经颅直流电刺激和近红外光谱揭示空间数字关联的跨皮质实现
  • 批准号:
    418004780
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerical Implementation new solution to Calderon EIT problem.
Calderon EIT 问题的数值实现新解。
  • 批准号:
    525764-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Efficient Numerical Implementation of FDTD based 3D Electromagnetic Metasurface Solver
基于 FDTD 的 3D 电磁超表面求解器的高效数值实现
  • 批准号:
    524668-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Numerical and implementation based strategies for improving performance of a flux reconstruction code
用于提高通量重建代码性能的基于数值和实现的策略
  • 批准号:
    2900572
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
GPU Implementation of the Cut-Stencil Method for Numerical Solution of PDEs
用于偏微分方程数值求解的 Cut-Stencil 方法的 GPU 实现
  • 批准号:
    511227-2017
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了