A Compositional Approach to Scalable Parallel Software
可扩展并行软件的组合方法
基本信息
- 批准号:0833199
- 负责人:
- 金额:$ 99.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-end computing systems are needed to study important, compute-intensive applications such as scientific simulations, multimedia stream processing, and geographical information systems. While these systems are still evolving, it is clear that they will be extremely large and complex, with tens to hundreds of thousands of processors providing a deep hierarchy of systems and resources. This research will develop the theory, techniques, and building blocks that can be used by domain scientists who are not expert parallel programmers to compose efficient applications for such complex systems.Hence, the outcomes of the research should greatly increase the number of potential users of high-end machines to include essentially all scientists whose problems could take advantage of such systems. The software resulting from this research, including the testbed applications for important problems in computational biology and physics, will be made publically available.Composition is a natural way to construct and reason about large, complex systems. This research will develop compositional strategies for building applications and for optimizing and controlling the application and its use of system resources.This project will use the STAPL (the Standard Template Adaptive Parallel Library) infrastructure for parallel C++ code. STAPL includes of a collection of generic parallel algorithms and distributed containers. In this research, STAPL's existing adaptive capabilities will be further refined and novel techniques will be developed for compositional performance modeling and for providing fault-tolerance capabilities that can be set individually for each container or algorithm instance in the program. A modern programming interface will be designed based on composition of parallel operations that will be modeled on the range abstractions in STAPL and C++0x and directly supported by a high-level compiler.
需要高端计算系统来研究重要的计算密集型应用,如科学模拟、多媒体流处理和地理信息系统。虽然这些系统仍在发展中,但很明显,它们将极其庞大和复杂,数万到数十万个处理器提供了深层次的系统和资源。这项研究将开发领域科学家可以使用的理论、技术和构建块,这些科学家不是专业的并行程序员,可以为如此复杂的系统构建高效的应用程序。因此,研究结果应该会极大地增加高端机器的潜在用户数量,基本上包括所有其问题可能利用此类系统的科学家。这项研究产生的软件,包括计算生物学和物理学中重要问题的试验台应用程序,将公开可用。合成是构建和推理大型复杂系统的自然方式。这项研究将开发构建应用程序的组合策略,并优化和控制应用程序及其系统资源的使用。该项目将使用STAPL(标准模板自适应并行库)基础设施来并行C++代码。STAPL包括一组通用并行算法和分布式容器。在这项研究中,STAPL现有的自适应能力将进一步得到改进,并将开发新的技术,用于组合性能建模和提供容错能力,这些容错能力可以为程序中的每个容器或算法实例单独设置。现代编程接口将基于并行操作的组合来设计,这些并行操作将在STAPL和C++0x的范围抽象的基础上建模,并由高级编译器直接支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence Rauchwerger其他文献
Sensitivity analysis for automatic parallelization on multi-cores
多核自动并行化的敏感性分析
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
S. Rus;Maikel Pennings;Lawrence Rauchwerger - 通讯作者:
Lawrence Rauchwerger
The R-LRPD test: speculative parallelization of partially parallel loops
R-LRPD 测试:部分并行循环的推测并行化
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Francis H. Dang;Hao Yu;Lawrence Rauchwerger - 通讯作者:
Lawrence Rauchwerger
Logical inference techniques for loop parallelization
循环并行化的逻辑推理技术
- DOI:
10.1145/2254064.2254124 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
C. Oancea;Lawrence Rauchwerger - 通讯作者:
Lawrence Rauchwerger
Automatic Detection of Parallelism: A grand challenge for high performance computing
自动检测并行性:高性能计算的巨大挑战
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
W. Blume;R. Eigenmann;J. Hoeflinger;D. Padua;Paul Petersen;Lawrence Rauchwerger;P. Tu - 通讯作者:
P. Tu
Measuring limits of parallelism and characterizing its vulnerability to resource constraints
测量并行性的限制并描述其对资源限制的脆弱性
- DOI:
10.1109/micro.1993.282747 - 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
Lawrence Rauchwerger;P. Dubey;R. Nair - 通讯作者:
R. Nair
Lawrence Rauchwerger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lawrence Rauchwerger', 18)}}的其他基金
Workshop on Architecture and Software for Emerging Applications (WASEA)
新兴应用架构和软件研讨会 (WASEA)
- 批准号:
1657976 - 财政年份:2016
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
Student Travel Support for The 20-th International Conference on Parallel Architectures and Compilation Techniques (PACT)
第 20 届并行架构和编译技术国际会议 (PACT) 学生差旅支持
- 批准号:
1138543 - 财政年份:2011
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
Collaborative Research: Next Generation Compilers for Emerging Multicore Systems
合作研究:新兴多核系统的下一代编译器
- 批准号:
0702765 - 财政年份:2007
- 资助金额:
$ 99.96万 - 项目类别:
Continuing Grant
Student Travel Support for the 16th International Conference on Parallel Architecture and Compiler Techniques (PACT), September 2007
第 16 届并行架构和编译器技术国际会议 (PACT) 的学生旅行支持,2007 年 9 月
- 批准号:
0745852 - 财政年份:2007
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
Collaborative Research: CRS--AES: SoftCheck: Compiler and Run-Time Technology for Efficient Fault Detection and Correction in Low nm-Scale Multicore Chips
合作研究:CRS--AES:SoftCheck:用于低纳米级多核芯片中高效故障检测和纠正的编译器和运行时技术
- 批准号:
0615267 - 财政年份:2006
- 资助金额:
$ 99.96万 - 项目类别:
Continuing Grant
ITR/NGS: A Software Infrastructure for Computational Biology and Physics
ITR/NGS:计算生物学和物理学的软件基础设施
- 批准号:
0326350 - 财政年份:2003
- 资助金额:
$ 99.96万 - 项目类别:
Continuing Grant
Workshop NGS: Support for the Workshop on Languages and Compilers for Parallel Computing (LCPC)
研讨会 NGS:支持并行计算语言和编译器研讨会 (LCPC)
- 批准号:
0343276 - 财政年份:2003
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
NGS: Collaborative Research: SmartApps: An Application Centric Approach to High Performance Computing
NGS:协作研究:SmartApps:以应用程序为中心的高性能计算方法
- 批准号:
0103742 - 财政年份:2001
- 资助金额:
$ 99.96万 - 项目类别:
Continuing Grant
ITR/SY: SmartApps: An Application Centric Approach to Scientific Computing
ITR/SY:SmartApps:以应用程序为中心的科学计算方法
- 批准号:
0113971 - 财政年份:2001
- 资助金额:
$ 99.96万 - 项目类别:
Continuing Grant
Next Generation Software: SmartApps: Smart Applications for Heterogeneous Computing
下一代软件:SmartApps:异构计算的智能应用程序
- 批准号:
9975018 - 财政年份:1999
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
- 批准号:
2332891 - 财政年份:2024
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
- 批准号:
2338752 - 财政年份:2024
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
$ 99.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Uniquely Scalable Approach to Sequence Tens of Millions of Single Cells Without Compromising Performance
一种独特的可扩展方法,可在不影响性能的情况下对数千万个单细胞进行测序
- 批准号:
10700398 - 财政年份:2023
- 资助金额:
$ 99.96万 - 项目类别:
Development of a facile, robust, scalable, and versatile chemoenzymatic glycan-remodeling approach for site-specific antibody conjugation
开发一种简便、稳健、可扩展且多功能的化学酶聚糖重塑方法,用于位点特异性抗体缀合
- 批准号:
10615237 - 财政年份:2022
- 资助金额:
$ 99.96万 - 项目类别:
SBIR Phase I: A highly-scalable, rapid, in-season approach to tune a nitrogen model for accurate prediction of a corn crop’s remaining nitrogen need
SBIR 第一阶段:一种高度可扩展、快速的季节性方法,用于调整氮模型,以准确预测玉米作物的剩余氮需求
- 批准号:
2127096 - 财政年份:2022
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
22H03600 - 财政年份:2022
- 资助金额:
$ 99.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a facile, robust, scalable, and versatile chemoenzymatic glycan-remodeling approach for site-specific antibody conjugation
开发一种简便、稳健、可扩展且多功能的化学酶聚糖重塑方法,用于位点特异性抗体缀合
- 批准号:
10484443 - 财政年份:2022
- 资助金额:
$ 99.96万 - 项目类别:
Collaborative Research: A Scalable Sustainability-Based Approach to a Novel Demand Response Paradigm in the Emerging Smart Grid
协作研究:新兴智能电网中新型需求响应范式的基于可扩展可持续性的方法
- 批准号:
2039482 - 财政年份:2020
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
Collaborative Research: From knowledge consumers to knowledge producers: A scalable experiential learning approach for psychology and related disciplines
协作研究:从知识消费者到知识生产者:心理学及相关学科的可扩展体验式学习方法
- 批准号:
1837731 - 财政年份:2018
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant