Collaborative Research: CSR-PSCE, SM: Adaptive Memory Management in Shared Environments
合作研究:CSR-PSCE、SM:共享环境中的自适应内存管理
基本信息
- 批准号:0834566
- 负责人:
- 金额:$ 23.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Program performance is highly dependent on the amount of memory available to the program. In traditional computing systems, the memory working set of an application has a bounded size - providing more memory to an application improves performance until its working set is met. Once the working set is met, additional memory yields little or no benefit. However, in the presence of garbage collection (a technique for memory management where space that is unlikely to be reused by an application is automatically reclaimed), the relationship between program performance and memory allocation is more complex. Data is managed at three levels: the compiler manages data objects at the program level, the garbage collector manages the heap at the virtual machine level, and the virtual memory manager manages virtual memory at the operating system level. The middle layer plays a critical role. Increasing an application's heap size can reduce the frequency of garbage collections and improve performance, but too large a heap may trigger paging and degrade performance.Software developers take advantage of garbage collection (GC) for the many benefits it provides by using either garbage-collecting languages, such as Java and C#, or conventional languages (e.g., C and C++) augmented with conservative garbage collectors. While a conventional program uses exactly as much memory as it needs, the memory use of a garbage-collected program can be adjusted by changing the size of the heap used by the garbage collector. This difference can allow an advanced execution system to control applications' memory demands in response to the changing amount of available memory in a shared environment. This concept is increasingly important for today's multicore, multiprocessor machines.Building on previous work, this project develops the technology required to model the memory demand of garbage-collected programs and enable adaptive management in existing virtual machines and operating systems. Specifically, the project extends the PIs' work on whole-program locality and phase models and adaptive memory management, combining program analysis, garbage collection control, and on-line system monitoring.This work develops program-level adaptive memory management (PAMM) for garbage-collected programs running concurrently with other garbage-collected programs and with conventional applications. The goal is to adjust all applications' demands to fully use available memory and avoid contention from periods of over demand.
程序的性能高度依赖于程序可用的内存量。在传统的计算系统中,应用程序的内存工作集具有有限的大小——为应用程序提供更多的内存可以提高性能,直到满足其工作集。一旦满足了工作集,额外的内存几乎没有好处。然而,在存在垃圾收集(一种内存管理技术,其中应用程序不太可能重用的空间被自动回收)的情况下,程序性能和内存分配之间的关系更加复杂。数据在三个级别上进行管理:编译器在程序级别管理数据对象,垃圾收集器在虚拟机级别管理堆,虚拟内存管理器在操作系统级别管理虚拟内存。中间层起着关键作用。增加应用程序的堆大小可以减少垃圾收集的频率并提高性能,但是过大的堆可能会触发分页并降低性能。通过使用垃圾收集语言(如Java和c#)或常规语言(如C和c++)增强了保守的垃圾收集器,软件开发人员可以利用垃圾收集(GC)提供的许多好处。虽然传统程序使用的内存与它所需要的完全相同,但是垃圾收集程序的内存使用可以通过更改垃圾收集器使用的堆的大小来调整。这种差异允许高级执行系统根据共享环境中可用内存量的变化来控制应用程序的内存需求。这个概念对于今天的多核、多处理器机器来说越来越重要。在先前工作的基础上,该项目开发了对垃圾收集程序的内存需求进行建模所需的技术,并在现有虚拟机和操作系统中实现自适应管理。具体而言,该项目扩展了pi在整个程序局部和阶段模型以及自适应内存管理方面的工作,结合了程序分析,垃圾收集控制和在线系统监控。这项工作为与其他垃圾收集程序和传统应用程序并发运行的垃圾收集程序开发了程序级自适应内存管理(PAMM)。目标是调整所有应用程序的需求,以充分利用可用内存,并避免在需求过剩期间发生争用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen Ding其他文献
Stretched-pulse fiber laser mode-locked by PbS quantum dots
PbS 量子点锁模拉伸脉冲光纤激光器
- DOI:
10.1016/j.optlastec.2022.107991 - 发表时间:
2022 - 期刊:
- 影响因子:5
- 作者:
Han Cui;Hancheng Zhang;Chen Ding;Yongqi Ding;Yi Ju;Xiaoqing Ma;Dengyun Lu;Ling Yun;Kehan Yu;Wei Wei - 通讯作者:
Wei Wei
Structural Color Fibers Directly Drawn from Colloidal Suspensions with Controllable Optical Properties
直接从胶体悬浮液中提取的具有可控光学性能的结构彩色纤维
- DOI:
10.1021/acsami.8b21070 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Wei Yuan;Qingsong Li;Zhou Ning;Suming Zhang;Chen Ding;Lei Shi;Ke-Qin Zhang - 通讯作者:
Ke-Qin Zhang
Hepatitis Delta Virus Delta Antigens Forms and the Phosphorylated Residues of Characterization of the Phosphorylated
丁型肝炎病毒 Delta 抗原形式和磷酸化残基的表征
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Chen Ding;Chen Pei;J. Mu;Huiliang Wu;B. Chiang - 通讯作者:
B. Chiang
Listening and Speaking for Real-World Communication: What Teachers Do and What Students Learn From Classroom Assessments
真实世界交流的听力和口语:教师所做的事情以及学生从课堂评估中学到的东西
- DOI:
10.1177/21582440211009163 - 发表时间:
2021 - 期刊:
- 影响因子:2
- 作者:
Melissa H. Yu;B. Reynolds;Chen Ding - 通讯作者:
Chen Ding
Determination of 90Sr in different matrices via ion-exchange chromatography and LSC
离子交换色谱和LSC 测定不同基质中的90Sr
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.6
- 作者:
Ping Xu;Chen Ding;Guo;Zhi Chen - 通讯作者:
Zhi Chen
Chen Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chen Ding', 18)}}的其他基金
SHF: Small: Data Movement Complexity: Theory and Optimization
SHF:小型:数据移动复杂性:理论与优化
- 批准号:
2217395 - 财政年份:2022
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Programmable Hierarchical Caches: Design, Programming, and Prototyping
合作研究:SHF:小型:可编程分层缓存:设计、编程和原型设计
- 批准号:
2114319 - 财政年份:2021
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
CNS Core:Small: Prescriptive Software Caching Using Leases
CNS Core:Small:使用租用的规范性软件缓存
- 批准号:
1909099 - 财政年份:2019
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
SHF:Small: Optimization of Parallel and Shared Cache Memory using the Footprint Theory
SHF:Small:使用足迹理论优化并行和共享缓存内存
- 批准号:
1717877 - 财政年份:2017
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
XPS: EXPL: Write Locality Theory and Optimization for Hybrid Memory
XPS:EXPL:混合内存的写入局部性理论和优化
- 批准号:
1629376 - 财政年份:2016
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
CSR: Small: Safe Parallelization in a Dynamic Language
CSR:小:动态语言中的安全并行化
- 批准号:
1319617 - 财政年份:2013
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
SHF: Small: Footprint Models and Techniques for Multi-core Cache Management
SHF:小型:多核缓存管理的占用空间模型和技术
- 批准号:
1116104 - 财政年份:2011
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
CSR-AES: Collaborative Research: Behavior-Based Speculative Parallelization and Optimization on Desktop Multiprocessors
CSR-AES:协作研究:桌面多处理器上基于行为的推测并行化和优化
- 批准号:
0720796 - 财政年份:2007
- 资助金额:
$ 23.46万 - 项目类别:
Continuing Grant
CSR---AES: Program Phase Detection and Exploitation
CSR---AES:程序相位检测和利用
- 批准号:
0509270 - 财政年份:2005
- 资助金额:
$ 23.46万 - 项目类别:
Continuing Grant
CAREER: Compiler-Assisted Data Adaptation
职业:编译器辅助数据适应
- 批准号:
0238176 - 财政年份:2003
- 资助金额:
$ 23.46万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
- 批准号:
2312206 - 财政年份:2023
- 资助金额:
$ 23.46万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Architecting GPUs for Practical Homomorphic Encryption-based Computing
协作研究:CSR:中:为实用的同态加密计算构建 GPU
- 批准号:
2312276 - 财政年份:2023
- 资助金额:
$ 23.46万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
- 批准号:
2312689 - 财政年份:2023
- 资助金额:
$ 23.46万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
- 批准号:
2401244 - 财政年份:2023
- 资助金额:
$ 23.46万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
- 批准号:
2314681 - 财政年份:2023
- 资助金额:
$ 23.46万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Small: Expediting Continual Online Learning on Edge Platforms through Software-Hardware Co-designs
协作研究:企业社会责任:小型:通过软硬件协同设计加快边缘平台上的持续在线学习
- 批准号:
2312157 - 财政年份:2023
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321224 - 财政年份:2023
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
- 批准号:
2312207 - 财政年份:2023
- 资助金额:
$ 23.46万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Adaptive Environmental Awareness for Collaborative Augmented Reality
协作研究:企业社会责任:媒介:协作增强现实的自适应环境意识
- 批准号:
2312760 - 财政年份:2023
- 资助金额:
$ 23.46万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
- 批准号:
2314680 - 财政年份:2023
- 资助金额:
$ 23.46万 - 项目类别:
Continuing Grant