Collaborative Research: Consensus on Climate Predication by Adaptive Synchronization of Models
合作研究:通过模型自适应同步进行气候预测共识
基本信息
- 批准号:0838235
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ultimate goal of this project is to fuse climate models, as they run in a 21st century simulation, so as to form a consensus on the details of climate change. The proposed fused "multi-model" should be more reliable than any of the separate models or any average of their outputs, since it would use the best predictive features of each model at each point in time.The fusion of models is based on the commonly observed tendency of chaotic systems to synchronize when they are connected through only a few of many variables. Synchronization of chaos has been advanced as a view of data assimilation for ongoing observations into a running model, effectively synchronizing the model with reality. Here, the models will assimilate information from each other. Since synchronization schemes can generally be extended to synchronize parameters as well as states, the connection coefficients linking different pairs of variables in different pairs of models can be dynamically adapted. After a series of experiments in a hierarchy of increasingly complex models, the consensus scheme would ultimately be applied to fuse three full-complexity global climate models, with the best predictive features of each selected automatically by adapting the connection coefficients in a training run using 20th century data.This project will take the first steps towards this goal of synchronized climate models, by exploring the theory of synchronization and developing an understanding of how synchronization may best be carried out in practice.Broader impacts of this project are in providing an example of adaptive synchronization-based consensus formation that can be applied in any situation where a collection of alternative models is used to represent an ongoing physical process of any sort. In particular, any new climate model could be added to the consensus by including it in the training scheme, thus giving climate change predictions a higher level of objectivity, with greater resulting impact.
该项目的最终目标是融合气候模型,因为它们运行在21世纪的模拟中,以便在气候变化的细节上形成共识。这种融合的“多模型”应该比任何单独的模型或其输出的任何平均值更可靠,因为它将使用每个模型在每个时间点的最佳预测特征,模型的融合是基于通常观察到的混沌系统在仅通过许多变量中的几个变量连接时的同步趋势。混沌的同步已经作为一种正在进行的观测的数据同化的观点被推进到一个运行的模型中,有效地使模型与现实同步。在这里,模型将相互吸收信息。由于同步方案通常可以扩展为同步参数和状态,因此链接不同模型对中的不同变量对的连接系数可以动态地适应。在一系列日益复杂的模式层级中进行了一系列实验后,共识方案最终将被应用于融合三个全复杂性全球气候模式,每个模式的最佳预测特征将通过使用20世纪的数据在训练运行中调整连接系数来自动选择。该项目将通过探索同步理论和了解如何最好地在实践中进行同步来朝着同步气候模型的目标迈出第一步。该项目的广泛影响在于提供了一个基于自适应同步的共识形成的例子,可以应用于任何情况下,任何情况下使用可选的模型集合来表示任何类型的正在进行的物理过程。特别是,任何新的气候模型都可以通过将其纳入培训计划而加入共识,从而使气候变化预测具有更高的客观性,从而产生更大的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Kirtman其他文献
Special issue: ENSO diversity
- DOI:
10.1007/s00382-019-04723-2 - 发表时间:
2019-04-02 - 期刊:
- 影响因子:3.700
- 作者:
Benjamin Kirtman - 通讯作者:
Benjamin Kirtman
Benjamin Kirtman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Kirtman', 18)}}的其他基金
Collaborative Research: El Nino/Southern Oscillation (ENSO) Predictability--Initial Condition Signal versus Uncoupled Atmospheric Noise
合作研究:厄尔尼诺/南方涛动 (ENSO) 可预测性 - 初始条件信号与非耦合大气噪声
- 批准号:
2241538 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: The Atlantic Meridional Overturning Circulation and Internal Climate Variability
合作研究:大西洋经向翻转环流和内部气候变率
- 批准号:
1558837 - 财政年份:2016
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Extratropical Triggering of El Nino/Southern Oscillation (ENSO) Events Through the Trade-Wind Charging Mechanism
合作研究:通过信风充电机制触发厄尔尼诺/南方涛动(ENSO)事件的温带事件
- 批准号:
1547137 - 财政年份:2016
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Revisiting Coupled Instability Theory and the Initiation of ENSO (El Nino/Southern Oscillation)
重新审视耦合不稳定理论和 ENSO(厄尔尼诺/南方涛动)的引发
- 批准号:
1450811 - 财政年份:2015
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: "EaSM-3": The Role of Ocean Eddies in Decadal Prediction
合作研究:“EaSM-3”:海洋涡流在年代际预测中的作用
- 批准号:
1419569 - 财政年份:2014
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Atlantic Decadal-to-Multidecadal Variability and Predictability
合作研究:了解大西洋十年间到多十年间的变异性和可预测性
- 批准号:
1137911 - 财政年份:2011
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
PRAC Collaborative Research: Testing Hypotheses about Climate Prediction at Unprecedented Resolutions on the NSF Blue Waters System
PRAC 合作研究:在 NSF Blue Waters 系统上以前所未有的分辨率测试有关气候预测的假设
- 批准号:
0832604 - 财政年份:2009
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: PetaApps: New Coupling Strategies and Capabilities for Petascale Climate Modeling
合作研究:PetaApps:千万亿次气候建模的新耦合策略和功能
- 批准号:
0749165 - 财政年份:2008
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Westerly Wind Burst Modulation by the Sea-Surface Temperature (SST): from Understanding to El Nino-Southern Oscillation (ENSO) Prediction
合作研究:海面温度(SST)对西风爆发的调节:从理解到厄尔尼诺-南方涛动(ENSO)预测
- 批准号:
0754341 - 财政年份:2008
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
Interactive Ensembles: A New Strategy for Coupled Ocean-Atmosphere Predictability Research
交互式集成:海洋-大气耦合可预测性研究的新策略
- 批准号:
0122859 - 财政年份:2001
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
- 批准号:
2240789 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
- 批准号:
2240788 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Building consensus around the quantification and interpretation of Symbiodiniaceae diversity
合作研究:围绕共生科多样性的量化和解释建立共识
- 批准号:
2127514 - 财政年份:2021
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Building consensus around the quantification and interpretation of Symbiodiniaceae diversity
合作研究:围绕共生科多样性的量化和解释建立共识
- 批准号:
2127508 - 财政年份:2021
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Building consensus around the quantification and interpretation of Symbiodiniaceae diversity
合作研究:围绕共生科多样性的量化和解释建立共识
- 批准号:
2127506 - 财政年份:2021
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Covid-19 Hotspot Network Size and Node Counting using Consensus Estimation
RAPID:协作研究:使用共识估计的 Covid-19 热点网络规模和节点计数
- 批准号:
2032114 - 财政年份:2020
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Covid-19 Hotspot Network Size and Node Counting using Consensus Estimation
RAPID:协作研究:使用共识估计的 Covid-19 热点网络规模和节点计数
- 批准号:
2032106 - 财政年份:2020
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Consensus on Climate Predication by Adaptive Synchronization of Models
合作研究:通过模型自适应同步进行气候预测共识
- 批准号:
0838251 - 财政年份:2009
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: CSR-EHCS(EHS), TM: Distributed Sensing via Robust Consensus on Manifolds
合作研究:CSR-EHCS(EHS),TM:通过流形上的鲁棒共识进行分布式传感
- 批准号:
0834470 - 财政年份:2008
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: CSR-EHCS(EHS), TM: Distributed Sensing via Robust Consensus on Manifolds
合作研究:CSR-EHCS(EHS),TM:通过流形上的鲁棒共识进行分布式传感
- 批准号:
0834446 - 财政年份:2008
- 资助金额:
$ 8万 - 项目类别:
Standard Grant














{{item.name}}会员




