RAPID: Collaborative Research: Covid-19 Hotspot Network Size and Node Counting using Consensus Estimation
RAPID:协作研究:使用共识估计的 Covid-19 热点网络规模和节点计数
基本信息
- 批准号:2032114
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In order to open up the economy in light of the reality of COVID-19, a suite of solutions are needed to minimize the spread of COVID-19 which include providing tools for businesses to minimize the risk for their employees and customers. It is important to detect transmission hotspots where the contact between infected and uninfected persons is higher than average. This project will provide information to assess precisely the size, density and locations of COVID-19 hotspots and enable issuing well-informed advisories based on data-driven continuous risk assessment. Every step will be taken to ensure privacy and network security and specific algorithms will be developed for secure access and information transfer. The project will access databases at CDC, Johns Hopkins and the WHO, and create a comprehensive website to disseminate real-time localized COVID-19 hotspot data, while maintaining privacy. The project will create new algorithms and embed them in iOS and Android apps that will continuously interact with databases. The software for mobile devices as well as central hubs will be made publicly available through APIs for use by the broader community.The project will use advanced consensus-based methods for estimating network area/size, node locations and node counts in a network based on minimal transmit-receive data. The proposed methods will lead to significant improvements compared to existing algorithms. The project will design consensus-based algorithms to estimate (a) the center, radius, and consequently, the size of the network, and (b) the number of users in the network. Localization algorithms will be designed that work with noisy and incomplete data. The proposed work is different from the contact-tracing technology used by Google and Apple which is limited to newer devices. The proposed algorithms and software will advance the state of the art while retaining compatibility with emerging and existing mobile technology. The project will help reduce COVID-19 infections and save lives. The research will also have applicability to other fields such as the E911 system, indoor user tracking, infrastructure-free implementations applicable to robotics, autonomous systems and vehicle fleets, and location-aware patient care and other mobile health applications. The developed algorithms can be used in other emergency situations, such as locating clusters of sheltering groups in the case of earthquakes and tsunamis, to assist first responders in finding survivors after an event, and for detection of transmission nodes in the case of future pandemics or future waves of COVID-19. Outreach activities will be integrated with the research and include the creation of software and web content for dissemination.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了结合新冠肺炎的现实开放经济,需要一套解决方案来将新冠肺炎的传播降至最低,其中包括为企业提供工具,以将员工和客户面临的风险降至最低。重要的是要发现感染者和非感染者之间接触高于平均水平的传播热点。该项目将提供信息,以准确评估新冠肺炎热点的规模、密度和位置,并基于数据驱动的持续风险评估发布知情建议。将采取每一步来确保隐私和网络安全,并将为安全访问和信息传输制定具体的算法。该项目将访问美国疾病控制与预防中心、约翰·霍普金斯大学和世界卫生组织的数据库,并创建一个全面的网站,以传播实时的本地化新冠肺炎热点数据,同时保护隐私。该项目将创建新的算法,并将其嵌入iOS和Android应用程序中,这些应用程序将持续与数据库交互。用于移动设备和中央集线器的软件将通过API公开,供更广泛的社区使用。该项目将使用先进的基于共识的方法来估计网络区域/大小、节点位置和网络中的节点计数,这些方法基于最少的发送-接收数据。与现有算法相比,所提出的方法将有显著的改进。该项目将设计基于共识的算法来估计(A)中心、半径,从而估计网络的大小,以及(B)网络中的用户数。定位算法将被设计成能够处理噪声和不完整的数据。这项拟议的工作不同于谷歌和苹果使用的联系人追踪技术,后者仅限于较新的设备。拟议的算法和软件将提升最先进的技术水平,同时保持与新兴和现有移动技术的兼容性。该项目将有助于减少新冠肺炎感染,拯救生命。这项研究还将适用于其他领域,如E911系统、室内用户跟踪、适用于机器人、自主系统和车队的免基础设施实施,以及位置感知患者护理和其他移动医疗应用。所开发的算法可用于其他紧急情况,例如在地震和海啸情况下定位避难所集群,以帮助应急人员在事件发生后找到幸存者,以及在未来的流行病或未来的新冠肺炎浪潮的情况下检测传播节点。外展活动将与研究相结合,包括创建用于传播的软件和网络内容。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Spanias其他文献
Despeckle Filtering Algorithms and Software for Ultrasound Imaging Despeckle Filtering Algorithms and Software for Ultrasound Imaging Despeckle Filtering Algorithms and Software for Ultrasound Imaging Synthesis Lectures on Algorithms and Software in Engineering #1
超声成像去斑滤波算法和软件 超声成像去斑滤波算法和软件 超声成像去斑滤波算法和软件 工程算法和软件综合讲座
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
C. Loizou;C. Pattichis;Eleni Loizou;Andreas Spanias - 通讯作者:
Andreas Spanias
Adaptive noise cancellation using fast optimum block algorithms
使用快速最佳块算法的自适应噪声消除
- DOI:
10.1109/iscas.1991.176430 - 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
M. E. Deisher;Andreas Spanias - 通讯作者:
Andreas Spanias
Gradient projection-based channel equalization under sustained fading
- DOI:
10.1016/j.sigpro.2007.07.014 - 发表时间:
2008-02-01 - 期刊:
- 影响因子:
- 作者:
Venkatraman Atti;Andreas Spanias;Kostas Tsakalis;Constantinos Panayiotou;Leon Iasemidis;Visar Berisha - 通讯作者:
Visar Berisha
Introducing Quantum Computing in a Sophomore Signals and Systems Course
在大二信号与系统课程中介绍量子计算
- DOI:
10.1109/fie58773.2023.10343312 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Chao Wang;Aradhita Sharma;Glen S. Uehara;Leslie Miller;Deep Pujara;W. Barnard;Jean Larson;Andreas Spanias - 通讯作者:
Andreas Spanias
Quantum and Classical Machine Learning Algorithm Comparisons for Monitoring PV Array Faults with Emphasis to Shading Detection
用于监测光伏阵列故障的量子和经典机器学习算法比较,重点是阴影检测
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Kaden McGuffie;Glen S. Uehara;Sameeksha Katoch;Andreas Spanias - 通讯作者:
Andreas Spanias
Andreas Spanias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Spanias', 18)}}的其他基金
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Quantum Machine Learning Online Materials and Software Modules for Undergraduate Education
适用于本科教育的量子机器学习在线材料和软件模块
- 批准号:
2215998 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
MRI: Development of a Sensors and Machine Learning Instrument Suite for Solar Array Monitoring
MRI:开发用于太阳能阵列监测的传感器和机器学习仪器套件
- 批准号:
2019068 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RET Site: Sensor, Signal and Information Processing Algorithms and Software
RET 站点:传感器、信号和信息处理算法和软件
- 批准号:
1953745 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
IRES Track I: Sensors and Machine Learning for Solar Power Monitoring and Control
IRES Track I:用于太阳能监测和控制的传感器和机器学习
- 批准号:
1854273 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
REU Site: Sensor, Signal and Information Processing Devices and Algorithms
REU 网站:传感器、信号和信息处理设备和算法
- 批准号:
1659871 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
I/UCRC Phase II: ASU Research Site of the NSF Net-Centric and Cloud Software and Systems I/UCRC
I/UCRC 第二阶段:美国国家科学基金会 (NSF) 网络中心和云软件与系统的 ASU 研究站点 I/UCRC
- 批准号:
1540040 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CPS: Synergy: Image Modeling and Machine Learning Algorithms for Utility-Scale Solar Panel Monitoring
CPS:协同:用于公用事业规模太阳能电池板监控的图像建模和机器学习算法
- 批准号:
1646542 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
I/UCRC: Workshops Promoting International USA-Mexico Collaborations in Sensors and Signal Processing
I/UCRC:促进美国-墨西哥在传感器和信号处理领域国际合作的研讨会
- 批准号:
1550393 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Development of Scalable Mobile Multidisciplinary Modules (SM3) for STEM Education
合作研究:STEM教育可扩展移动多学科模块(SM3)的集成开发
- 批准号:
1525716 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425430 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403882 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425429 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant