Three-dimensional spontaneous dynamic rupture models on geometrically complex faults with state-of-the-art frictional parameterization

具有最先进摩擦参数化的几何复杂断层的三维自发动态破裂模型

基本信息

  • 批准号:
    0838464
  • 负责人:
  • 金额:
    $ 17.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-03-15 至 2012-02-29
  • 项目状态:
    已结题

项目摘要

Dynamic spontaneous earthquake rupture models have proven themselves to be valuable tools to investigate the physics of earthquakes and to help predict ground motion. These numerical models start from basic assumptions about material structure, frictional behavior, and fault geometry, and calculate the spatiotemporal evolution of fault slip (and often the resultant near-source ground motion). Such dynamic models typically use either laboratory-derived friction laws or realistically complex fault geometry, but not both. The researchers propose to bring dynamic earthquake modeling an important step forward by combining these two separate tracks: they will use laboratory-derived friction laws to model spontaneous rupture propagation and slip on faults with realistically complex geometry. They expect to obtain first-order effects in rupture propagation, slip, and ground motion that will differ from previous modeling efforts, leading to both a better understanding of the earthquake process and better predictions of faulting behavior and ground motion. Dynamic earthquake models have historically followed two tracks: 1) investigations of the effect of frictional parameterization and stress pattern on simple planar faults, and 2) investigations of the effects of fault geometry on the earthquake process, using simple frictional parameterizations. the PIs will combine these two tracks to produce a new generation of dynamic earthquake models. Data from laboratory experiments at high slip rates and theoretical models imply that at the high slip rates observed during earthquakes, the typical rate-and-state frictional formulation must be modified to incorporate a greater degree of weakening over a larger length scale. Additionally, research on faults with complex, asymmetrical geometry shows that temporal variation of normal stress, which is inevitable on non-planar faults, can have a significant effect on rupture dynamics. To correctly model both these aspects of faulting behavior, they will develop a modern frictional parameterization and use it to model the behavior of geometrically complex faults, such as systems with stepovers and branches. The new 3D finite element method that will incorporate a new, realistic method for off-fault stress relaxation, which is necessary to avoid pathological stress buildup on such fault systems. These important ingredients of earthquake physics have never before been combined in a single modeling method, and the result of such a combination will be a state-of-the art tool to model the physics of earthquakes. The researchers will address important questions about the behavior of faults at stepovers and branches, including determining if there are general rules for how to predict rupture path at branches, and the ability of rupture to span stepovers.The proposed research will have important implications for both earthquake science and the broader scientific and educational community. A key use of the modeling method will be to gain insight into the potential size of earthquakes on geometrically complex fault systems, such as those in the Los Angeles region. Many fault systems are bounded by geometrical features such as fault gaps and changes in segment orientation; the proposed numerical models will help determine the circumstances under which earthquake rupture may propagate across these segment boundaries, and generate larger earthquakes with larger ground motion. In addition, the proposed research will lead to better estimates of the slip distribution and rupture front evolution, which also strongly affect ground motion. The resulting improved earthquake source models can help in the probabilistic assessment of earthquake size and ground motion pattern, with subsequent potential impacts on seismic hazard and building code and design.
动态自发地震破裂模型已被证明是研究地震物理和帮助预测地面运动的宝贵工具。 这些数值模型从有关材料结构、摩擦行为和断层几何形状的基本假设出发,计算断层滑动的时空演化(通常还计算由此产生的近源地震动)。 此类动态模型通常使用实验室推导的摩擦定律或实际复杂的断层几何形状,但不能同时使用两者。 研究人员建议通过结合这两个独立的轨道,使动态地震建模向前迈出重要一步:他们将使用实验室导出的摩擦定律来模拟具有实际复杂几何形状的断层上的自发破裂传播和滑动。 他们希望获得破裂传播、滑动和地面运动的一阶效应,这将不同于以前的建模工作,从而更好地了解地震过程并更好地预测断层行为和地面运动。动态地震模型历史上遵循两条轨道:1)研究摩擦参数化和应力模式对简单平面断层的影响,2)使用简单摩擦参数化研究断层几何形状对地震过程的影响。 PI 将结合这两个轨道来生成新一代动态地震模型。高滑移率实验室实验和理论模型的数据表明,在地震期间观察到的高滑移率下,必须修改典型的速率和状态摩擦公式,以在更大的长度范围内纳入更大程度的弱化。 此外,对具有复杂、不对称几何形状的断层的研究表明,在非平面断层上不可避免的正应力的时间变化会对破裂动力学产生重大影响。 为了正确模拟断层行为的这两个方面,他们将开发现代摩擦参数化,并用它来模拟几何复杂断层的行为,例如具有步距和分支的系统。 新的 3D 有限元方法将采用一种新的、现实的断层应力松弛方法,这对于避免此类断层系统上的病态应力积累是必要的。 地震物理学的这些重要组成部分以前从未被结合在单一的建模方法中,这种结合的结果将成为模拟地震物理学的最先进的工具。 研究人员将解决有关跨步和分支断层行为的重要问题,包括确定是否存在预测分支破裂路径的一般规则,以及破裂跨越跨步的能力。这项研究将对地震科学和更广泛的科学和教育界产生重要影响。 该建模方法的一个关键用途是深入了解几何复杂断层系统(例如洛杉矶地区的断层系统)发生地震的潜在规模。 许多断层系统受到断层间隙和断层方向变化等几何特征的限制;所提出的数值模型将有助于确定地震破裂可能跨越这些段边界传播的情况,并产生具有更大地面运动的更大地震。 此外,所提出的研究将有助于更好地估计滑移分布和破裂前沿演化,这也强烈影响地震动。 由此产生的改进的地震源模型可以帮助对地震规模和地面运动模式进行概率评估,从而对地震危害以及建筑规范和设计产生潜在影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Oglesby其他文献

Quantifying Error Propagation in Data Flow Models
量化数据流模型中的误差传播
Towards Scalable Verification of Commercial Avionics Software
迈向商业航空电子软件的可扩展验证
Interactive Learning Tools: Animating Mechanics of Materials
交互式学习工具:材料力学动画
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Philpot;David Oglesby;R. Flori;Vikas Yellamraju;Richard H. Hall;N. Hubing
  • 通讯作者:
    N. Hubing
Interactive Learning Tools: Animating Statics
交互式学习工具:动画静态
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Hubing;David Oglesby;T. Philpot;Vikas Yellamraju;Richard H. Hall;R. Flori
  • 通讯作者:
    R. Flori

David Oglesby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Oglesby', 18)}}的其他基金

Collaborative Research: Dynamic fault rupture in the presence of 3D heterogenous tectonic stress: the case of the San Andreas Fault in Eastern San Gorgonio Pass
合作研究:三维异质构造应力存在下的动态断层破裂:以圣戈戈尼奥山口东部圣安德烈亚斯断层为例
  • 批准号:
    1623739
  • 财政年份:
    2016
  • 资助金额:
    $ 17.19万
  • 项目类别:
    Standard Grant
Exploring Deep Fault Mechanics by Identifying Non-Volcanic Tremor on Southern California Faults
通过识别南加州断层上的非火山震颤探索深层断层力学
  • 批准号:
    0943892
  • 财政年份:
    2010
  • 资助金额:
    $ 17.19万
  • 项目类别:
    Standard Grant
The Long-Term Dynamics and Evolution of Geometrically Complex Fault Systems
几何复杂断层系统的长期动力学和演化
  • 批准号:
    0409836
  • 财政年份:
    2004
  • 资助金额:
    $ 17.19万
  • 项目类别:
    Standard Grant
Dynamic Rupture Propagation in the Presence of Thermally Driven Fluid Flow and Melting Due to Fault Slip: a Modeling Study
存在热驱动流体流动和断层滑动熔化时的动态破裂传播:建模研究
  • 批准号:
    0229391
  • 财政年份:
    2003
  • 资助金额:
    $ 17.19万
  • 项目类别:
    Standard Grant
Collaborative Research (USC/UCLA/UCR/SDSU): Continuing Study of Internal Structure, Dynamic Rupture, and Post-Earthquake Healing of the Hector Mine Rupture Zone
合作研究(USC/UCLA/UCR/SDSU):赫克托矿破裂带内部结构、动态破裂和震后修复的持续研究
  • 批准号:
    0229678
  • 财政年份:
    2003
  • 资助金额:
    $ 17.19万
  • 项目类别:
    Standard Grant
The Long-Term Dynamics and Evolution of Dip-Slip Faults
倾滑断层的长期动力学和演化
  • 批准号:
    0106828
  • 财政年份:
    2001
  • 资助金额:
    $ 17.19万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
  • 批准号:
    81150011
  • 批准年份:
    2011
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
肝脏管道系统数字化及三维成像的研究
  • 批准号:
    30470493
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
  • 批准号:
    10667938
  • 财政年份:
    2023
  • 资助金额:
    $ 17.19万
  • 项目类别:
Potassium channels and uteroplacental vessels function in pregnant long QT type 1 women
怀孕长 QT 1 型女性的钾通道和子宫胎盘血管功能
  • 批准号:
    10665263
  • 财政年份:
    2023
  • 资助金额:
    $ 17.19万
  • 项目类别:
Signaling dynamics in the control of ectoderm patterning and morphogenesis
控制外胚层模式和形态发生的信号动力学
  • 批准号:
    10623412
  • 财政年份:
    2023
  • 资助金额:
    $ 17.19万
  • 项目类别:
Teratogenicity assessment of new antiviral drugs using 3D morphogenesis models
使用 3D 形态发生模型评估新型抗病毒药物的致畸性
  • 批准号:
    10741474
  • 财政年份:
    2023
  • 资助金额:
    $ 17.19万
  • 项目类别:
Development of a lacO/lacI based fluorescence reporter-operator system to study chromosome dynamics and double-strand break repair in mouse meiosis.
开发基于 lacO/lacI 的荧光报告操纵子系统,用于研究小鼠减数分裂中的染色体动力学和双链断裂修复。
  • 批准号:
    10674379
  • 财政年份:
    2023
  • 资助金额:
    $ 17.19万
  • 项目类别:
Targeting checkpoint inhibitors for pain control
针对疼痛控制的检查点抑制剂
  • 批准号:
    10771904
  • 财政年份:
    2023
  • 资助金额:
    $ 17.19万
  • 项目类别:
Role of Sam68 in Proinflammatory Signaling
Sam68 在促炎信号传导中的作用
  • 批准号:
    10446490
  • 财政年份:
    2022
  • 资助金额:
    $ 17.19万
  • 项目类别:
Homolog pairing in meiosis
减数分裂中的同源配对
  • 批准号:
    10615149
  • 财政年份:
    2022
  • 资助金额:
    $ 17.19万
  • 项目类别:
The Role of Hippo-Yap1 Signaling in Germ-layer Specification
Hippo-Yap1 信号在胚层规范中的作用
  • 批准号:
    10683241
  • 财政年份:
    2022
  • 资助金额:
    $ 17.19万
  • 项目类别:
Delineating the function of MHC class III genes in antigen presenting myeloid cell contribution to autoimmunity
描述 MHC III 类基因在抗原呈递骨髓细胞对自身免疫的贡献中的功能
  • 批准号:
    10429530
  • 财政年份:
    2022
  • 资助金额:
    $ 17.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了