CAREER: Large-scale Spatial Temporal Data Driven Simulation with Sequential Monte Carlo Methods
职业:使用顺序蒙特卡罗方法进行大规模时空数据驱动仿真
基本信息
- 批准号:0841170
- 负责人:
- 金额:$ 42.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of2009 (Public Law 111-5).Large-scale spatial temporal systems such as wildfire are inherently difficult to study due to their complex and dynamical behavior. Computer modeling and simulation provide an important tool for understanding and predicting the dynamic behavior of these systems. While sophisticated simulation models have been developed, traditional simulations are largely decoupled from real systems by making little usage of real time data from the systems under study. With recent advances in sensor and network technologies, the availability and fidelity of such real time data have greatly increased. A new paradigm of dynamic data-driven simulation is emerging where a simulation system is continually influenced by the real time data for better analysis and prediction of a system under study. This project investigates tractable approaches for dynamic data driven simulation of large-scale spatial temporal systems based on state-of-the-art probabilistic techniques using Sequential Monte Carlo (SMC) methods. New algorithms and methods are developed to enhance the effectiveness and efficiency of data driven simulation of large-scale spatial temporal systems. The project builds upon the application context of wildfire that the PI has experience with.This project will have a strong impact on both theory and practice aspects of simulation-based study of large-scale complex systems in general, and wildfire in particular. The project will result in major advances to the new paradigm of dynamic data-driven simulation, and can potentially benefit many other fields where sophisticated simulation models are used, such as manufacturing, transportation, geo-ecological science, and national security. The project also has a comprehensive education component, including course development, involving undergraduates and under-represented students in research, and international student exchange. Dissemination will include demonstrations, a shared simulation environment, and workshops/tutorials.
该奖项由2009年美国复苏和再投资法案(公法111-5)资助。大规模时空系统,如野火,由于其复杂和动态的行为,本质上是难以研究的。计算机建模和仿真为理解和预测这些系统的动态行为提供了重要的工具。 虽然已经开发了复杂的仿真模型,但是传统的仿真通过很少使用来自所研究的系统的真实的时间数据而在很大程度上与真实的系统解耦。 随着传感器和网络技术的最新进展,这种真实的时间数据的可用性和保真度已经大大增加。 一种新的动态数据驱动仿真模式正在出现,其中仿真系统不断受到真实的时间数据的影响,以便更好地分析和预测所研究的系统。 本计画以序贯蒙地卡罗方法为基础,探讨动态资料驱动模拟大规模时空系统的可行方法。 为了提高大规模时空系统数据驱动仿真的有效性和效率,提出了新的算法和方法。 该项目建立在PI具有经验的野火应用背景之上。该项目将对基于模拟的大规模复杂系统研究的理论和实践方面产生重大影响,特别是野火。 该项目将导致动态数据驱动仿真新范式的重大进展,并可能使许多其他使用复杂仿真模型的领域受益,如制造业,交通运输,地理生态科学和国家安全。 该项目还有一个全面的教育组成部分,包括课程编制,让本科生和代表人数不足的学生参与研究,以及国际学生交流。 传播将包括演示、共享模拟环境和研讨会/教程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaolin Hu其他文献
Quality of Life Among Primary Family Caregivers of Patients with Heart Failure in Southwest China
中国西南地区心力衰竭患者主要家庭照顾者的生活质量
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:1.3
- 作者:
Xiaolin Hu;Xiuying Hu;Yonglin Su;Moying Qu - 通讯作者:
Moying Qu
Optical property theoretical study and mild-temperature synthesis of (Ga,Zn)N nanocrystals
(Ga,Zn)N纳米晶的光学性质理论研究及温和合成
- DOI:
10.1016/j.cplett.2013.10.055 - 发表时间:
2013-12 - 期刊:
- 影响因子:2.8
- 作者:
Naifeng Zhuang;Lin Wei;Yinhua Li;Yongfan Zhang;Xiaolin Hu;Jianzhong Chen;Junqian Li - 通讯作者:
Junqian Li
Novel splicing (c.6529-1G>T) and missense (c.1667G>A) mutations causing factor V deficiency
导致 V 因子缺乏的新剪接 (c.6529-1G>T) 和错义 (c.1667G>A) 突变
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.1
- 作者:
S. Maharaj;Sofia Saenz Ayala;Xiaolin Hu;Simone Chang;Vivek A Sharma;J. Majerus;R. Pruthi - 通讯作者:
R. Pruthi
Edge-defined film-fed growth of incongruent-melting Ce,Ga:GIG crystal with high magneto-optical performance
具有高磁光性能的非等熔熔 Ce,Ga:GIG 晶体的边缘限定薄膜馈送生长
- DOI:
10.1016/j.jallcom.2021.161456 - 发表时间:
2021 - 期刊:
- 影响因子:6.2
- 作者:
Haipeng Liu;Jinru Shen;Xiaofeng Liu;Xin Chen;Xiaolin Hu;Naifeng Zhuang - 通讯作者:
Naifeng Zhuang
Depressive symptoms in Chinese family caregivers of patients with heart failure
中国心力衰竭患者家庭照顾者的抑郁症状
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:1.6
- 作者:
Xiaolin Hu;Wen;Yonglin Su;Moying Qu;Xingchen Peng - 通讯作者:
Xingchen Peng
Xiaolin Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaolin Hu', 18)}}的其他基金
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335569 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Standard Grant
SCC-IRG Track 1: Smart and Safe Prescribed Burning for Rangeland and Wildland Urban Interface Communities
SCC-IRG 第 1 轨道:牧场和荒地城市界面社区的智能、安全规定燃烧
- 批准号:
2306603 - 财政年份:2023
- 资助金额:
$ 42.52万 - 项目类别:
Standard Grant
SCC-PG: Smart and Safe Prescribed Burning for Rangeland and Farmland Communities
SCC-PG:牧场和农田社区的智能、安全规定燃烧
- 批准号:
2125361 - 财政年份:2021
- 资助金额:
$ 42.52万 - 项目类别:
Standard Grant
Collaborative Learning in Cloud-based Virtual Computer Labs
基于云的虚拟计算机实验室中的协作学习
- 批准号:
1712384 - 财政年份:2017
- 资助金额:
$ 42.52万 - 项目类别:
Standard Grant
Collaborative Research: Portable, Modular, Modern Technology Infused Courseware for Broader Embedded System Education
协作研究:便携式、模块化、融入现代技术的课件,用于更广泛的嵌入式系统教育
- 批准号:
0942140 - 财政年份:2010
- 资助金额:
$ 42.52万 - 项目类别:
Standard Grant
Collaborative Research: CDI-Type II--Integrated Weather and Wildfire Simulation and Optimization for Wildfire Management
合作研究:CDI-Type II——天气与野火综合模拟及野火管理优化
- 批准号:
0941432 - 财政年份:2009
- 资助金额:
$ 42.52万 - 项目类别:
Standard Grant
CSR-CSI: System Integration of Dynamical Data Driven Wildfire Spread and Firefighting Modeling, Simulation, and Optimization
CSR-CSI:动态数据驱动的野火蔓延和消防建模、仿真和优化的系统集成
- 批准号:
0720675 - 财政年份:2007
- 资助金额:
$ 42.52万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Continuing Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Continuing Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Continuing Grant
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
- 批准号:
2339904 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 42.52万 - 项目类别:
Continuing Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
- 批准号:
2239410 - 财政年份:2023
- 资助金额:
$ 42.52万 - 项目类别:
Continuing Grant
CAREER: Large-Scale Exploration and Interpretation of Consumer-Oriented Legal Documents
职业:面向消费者的法律文件的大规模探索和解读
- 批准号:
2237574 - 财政年份:2023
- 资助金额:
$ 42.52万 - 项目类别:
Continuing Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
- 批准号:
2238096 - 财政年份:2023
- 资助金额:
$ 42.52万 - 项目类别:
Continuing Grant