CAREER: A Framework for Sparse Signal Reconstruction for Computer Graphics

职业:计算机图形学稀疏信号重建框架

基本信息

  • 批准号:
    0845396
  • 负责人:
  • 金额:
    $ 49.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

CAREER: A Framework for Sparse Signal Reconstruction for Computer GraphicsPradeep Sen, Dept. of Electrical & Computer Engr., University of New MexicoRecent progress in computer graphics has benefited our society in many ways: from entertainment (e.g. movies and games) to product manufacturing (e.g. virtual prototyping) and medicine (e.g. interactive medical visualization). However, despite these improvements we are still far from true interactive photorealism. In this research, the investigators develop a novel framework for computer graphics that improves the speed and quality of existing algorithms by leveraging ideas from the emerging field of compressed sensing. By taking advantage of the compressibility of real-world signals, the researchers explore new algorithms for image synthesis and acquisition. The broader impact of this work is that the core ideas developed will not only benefit important applications in computer graphics, but could also impact areas such as Magnetic Resonance Imaging (MRI) used for medical applications. On the educational side, the PI integrates Hispanics students into the research by fostering relationships with Latin America.This research is developing a fundamentally new paradigm for a core area of computer graphics: sampling and reconstruction. Most graphics algorithms (e.g. rendering systems) expend their effort sampling the entire signal, despite the fact the signal will be compressed afterwards (e.g. with a transform-coding compression algorithm such as JPEG). The investigators apply the ideas of compressed sensing in order to take advantage of the sparsity in the transform domain and sample the signal in an efficient manner. This results in a framework that can be used to accelerate rendering algorithms by reconstructing the final image from a sparse set of samples using greedy optimization algorithms. The same framework can also be used to accelerate the acquisition of light transport which is useful for relighting applications. The fundamental science explored through this work will spur new areas of research within the graphics community and in related fields.
CAREER:A Framework for Sparse Signal Reconstruction for Computer GraphicsPradeep Sen,Department.电气计算机工程师,计算机图形学的最新进展在许多方面使我们的社会受益:从娱乐(例如电影和游戏)到产品制造(例如虚拟原型)和医学(例如交互式医学可视化)。 然而,尽管有这些改进,我们仍然远离真正的交互式照片写实主义。 在这项研究中,研究人员开发了一种新的计算机图形框架,通过利用新兴的压缩感知领域的思想来提高现有算法的速度和质量。 通过利用现实世界信号的可压缩性,研究人员探索了图像合成和采集的新算法。 这项工作的更广泛影响是,开发的核心思想不仅将有利于计算机图形学的重要应用,而且还可能影响用于医疗应用的磁共振成像(MRI)等领域。 在教育方面,PI通过培养与拉丁美洲的关系将西班牙裔学生融入研究。这项研究正在为计算机图形学的核心领域开发一种全新的范式:采样和重建。大多数图形算法(例如,渲染系统)花费它们的努力对整个信号进行采样,而不管信号将在之后被压缩(例如,利用诸如JPEG的变换编码压缩算法)的事实。 研究人员应用压缩感知的思想,以利用变换域中的稀疏性,并以有效的方式对信号进行采样。 这导致了一个框架,该框架可用于通过使用贪婪优化算法从稀疏样本集重建最终图像来加速渲染算法。 相同的框架也可以用于加速光传输的获取,这对于重新照明应用是有用的。 通过这项工作探索的基础科学将刺激图形社区和相关领域的新研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pradeep Sen其他文献

Pradeep Sen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pradeep Sen', 18)}}的其他基金

CGV: Small: A Patch-based Framework for Capturing a World in Motion
CGV:小型:捕捉运动世界的基于补丁的框架
  • 批准号:
    1321168
  • 财政年份:
    2013
  • 资助金额:
    $ 49.55万
  • 项目类别:
    Continuing Grant
CAREER: A Framework for Sparse Signal Reconstruction for Computer Graphics
职业:计算机图形学稀疏信号重建框架
  • 批准号:
    1342931
  • 财政年份:
    2012
  • 资助金额:
    $ 49.55万
  • 项目类别:
    Standard Grant
PFI: A Consortium for Fulldome and Immersive Technology Development
PFI:球幕球和沉浸式技术开发联盟
  • 批准号:
    0917919
  • 财政年份:
    2010
  • 资助金额:
    $ 49.55万
  • 项目类别:
    Standard Grant
Thinking Outside the Dome
穹顶之外的思考
  • 批准号:
    0950275
  • 财政年份:
    2009
  • 资助金额:
    $ 49.55万
  • 项目类别:
    Standard Grant

相似海外基金

Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
  • 批准号:
    10110559
  • 财政年份:
    2024
  • 资助金额:
    $ 49.55万
  • 项目类别:
    EU-Funded
Law And Policy Framework For Remote Sensing In Maritime Enforcement
海事执法遥感法律和政策框架
  • 批准号:
    DP240100920
  • 财政年份:
    2024
  • 资助金额:
    $ 49.55万
  • 项目类别:
    Discovery Projects
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
  • 批准号:
    DP240102053
  • 财政年份:
    2024
  • 资助金额:
    $ 49.55万
  • 项目类别:
    Discovery Projects
NESP MaC Project 4.5– Developing an Integrated Pest Management Framework for Feral Pigs in Coastal Environments 2024-2026 (NAILSMA)
NESP MaC 项目 4.5 — 为 2024-2026 年沿海环境中的野猪制定综合害虫管理框架 (NAILSMA)
  • 批准号:
    global : ba1e00f0-9953-4c17-b990-ba7aed84ce07
  • 财政年份:
    2024
  • 资助金额:
    $ 49.55万
  • 项目类别:
An interdisciplinary analytical framework for high-mountain landslides and cascading hazards: implications for communities and infrastructure
高山滑坡和级联灾害的跨学科分析框架:对社区和基础设施的影响
  • 批准号:
    NE/Z503502/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.55万
  • 项目类别:
    Research Grant
Planning Grant: Developing capacity to attract diverse students to the geosciences: A public relations framework
规划补助金:培养吸引多元化学生学习地球科学的能力:公共关系框架
  • 批准号:
    2326816
  • 财政年份:
    2024
  • 资助金额:
    $ 49.55万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 49.55万
  • 项目类别:
    Standard Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
  • 批准号:
    2337176
  • 财政年份:
    2024
  • 资助金额:
    $ 49.55万
  • 项目类别:
    Standard Grant
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
  • 批准号:
    2337991
  • 财政年份:
    2024
  • 资助金额:
    $ 49.55万
  • 项目类别:
    Standard Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 49.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了