An interdisciplinary analytical framework for high-mountain landslides and cascading hazards: implications for communities and infrastructure

高山滑坡和级联灾害的跨学科分析框架:对社区和基础设施的影响

基本信息

  • 批准号:
    NE/Z503502/1
  • 负责人:
  • 金额:
    $ 107.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

In the wake of climate change, there is an ever-increasing need to bring socioeconomic (SE) and critical infrastructure (CI) perspectives within conventional physical hazard assessment models. High-mountain hazards impact lives of some of the most vulnerable communities globally. The exposure to and the frequency of hazards have increased and are highest for events such as landslides and cascading hazards, prevalent in mountains. We aim at developing an interdisciplinary analytical framework for identifying and assessing the risks to communities and CI from landslides and cascading glacial hazards. While the framework will be applicable to any high-mountain region, we will implement and test it for Bhagirathi and Bhilangana Valleys, known for their hydrological, hydropower, touristic, and religious significance. The designed workflow blends cutting-edge geoscience and social science research to develop new insights enabling the amelioration of the hazard risks.Targeting the existing research gap on spatiotemporal spread of landslides in Himalaya, our research will be performed at two spatial scales: (1) mapping, analysing, and understanding the direct hazardous impacts of landslides, and (2) modelling the indirect but cascading hazardous impacts of glacial landslides. In addition to mapping and modelling the events, the project also incorporates SE and CI factors, and community perceptions within the assessment and mitigation plans. While we will use high-resolution satellite datasets of past ~20 years to generate a multi-temporal landslide inventory, we will also use dendrogeomorphology methods to extend this inventory to past ~100 years of timescale, deducing the landslide patterns with respect to extreme weather, infrastructure development, and climate shifts. Furthermore, the relationship between rock characteristics/composition and the landslide failure mechanism needs more investigations. Such holistic and interdisciplinary framework covering all the aforementioned aspects on landslides for a high-mountain catchment is yet to be adopted and can set a benchmark for similar research in other high-mountain regions.The main objectives are: (1) to develop a temporally exhaustive landslide inventory using Earth Observation (EO) data and tree ring-based reconstructions, and understand their evolution with respect to extreme weather events and CI projects, (2) to assess the direct hazard impact of landslides on CI and habitation through spatial and demographic analyses, (3) to model the impacts of cascade hazard potential of glacial landslides at the identified sites, (4) to perform geotechnical analysis to understand the relationship between slope failure and slope material compositions and characteristics in this region, (5) to understand the community perception of hazards (with respect to land use and transhumance patterns, trade and migration routes, and kinship and alliance distributions), and (6) To design community-based and socially acceptable mitigation guidelines.The anticipated outcomes will be beneficial to high-mountain communities, taking a step towards mitigation through preparedness and increased awareness. The multi-temporal landslide inventory will help assess the hazard-prone regions for present and future CI. The community perception of hazards will further inform policy makers on acting accordingly while implementing the mitigation measures. The tree-ring-based reconstruction of past frequency series will serve as an excellent basis for the calibration and accuracy assessment of process-based landslide cascade simulation models. As a future prospect of the geotechnical investigations, the improved understanding on the relationship between slope failure mechanism and slope material compositions and characteristics in this region, will help develop reliable geotechnical models on landslide prediction.
在气候变化之后,需要将社会经济(SE)和关键基础设施(CI)观点(CI)观点带入传统的物理危害评估模型中。高山危害影响了全球一些最脆弱的社区的生命。危险的频率和频率增加,在山上普遍存在的山体滑坡和级联危险等事件中最高。我们旨在开发一个跨学科的分析框架,以识别和评估来自滑坡和级联冰川危害的社区和CI的风险。尽管该框架将适用于任何高山区,但我们将对以水文,水力发电,旅游和宗教意义而闻名的Bhagirathi和Bhilangana Valleys进行实施和测试。 The designed workflow blends cutting-edge geoscience and social science research to develop new insights enabling the amelioration of the hazard risks.Targeting the existing research gap on spatiotemporal spread of landslides in Himalaya, our research will be performed at two spatial scales: (1) mapping, analysing, and understanding the direct hazardous impacts of landslides, and (2) modelling the indirect but冰川滑坡的层层危险影响。除了映射和建模事件外,该项目还将SE和CI因素以及社区看法纳入评估和缓解计划中。虽然我们将使用过去约20年的高分辨率卫星数据集生成多个速度的滑坡库存,但我们还将使用DendroGeomorphorgology方法将此库存扩展到过去〜100年的时间表,以推断出对极端天气,基础结构的发展,基础结构的发展和气候变化的压倒性模式。此外,岩石特征/组成与滑坡故障机制之间的关系需要更多的研究。 Such holistic and interdisciplinary framework covering all the aforementioned aspects on landslides for a high-mountain catchment is yet to be adopted and can set a benchmark for similar research in other high-mountain regions.The main objectives are: (1) to develop a temporally exhaustive landslide inventory using Earth Observation (EO) data and tree ring-based reconstructions, and understand their evolution with respect to extreme weather events and CI projects, (2)通过空间和人口统计分析评估滑坡对CI和居住的直接危害影响,(3)模拟冰川层面滑坡在确定的地点对级联滑坡潜力的影响,(4)执行地球技术分析以了解该区域中的关系和特征(5),以了解该区域的关系(5)(5)(5)(5)跨性别模式,贸易和移民路线以及亲属关系和联盟分布)以及(6)设计基于社区的和社会可接受的缓解指南。预期的结果将对高山顶社区有益,通过准备和提高认识来缓解缓解措施。多阶梯滑坡库存将有助于评估当前和未来CI的易危险区域。社区对危害的看法将在实施缓解措施时进一步告知政策制定者采取相应的行动。过去频率系列的基于树环的重建将是对基于过程的滑坡级联模拟模型的校准和准确评估的绝佳基础。作为岩土研究的未来前景,对该区域的坡度故障机制与斜率材料组成和特征之间关系的了解将有助于开发在滑坡预测上可靠的岩土技术模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anshuman Bhardwaj其他文献

A novel automated labelling algorithm for deep learning-based built-up areas extraction using nighttime lighting data
  • DOI:
    10.1016/j.knosys.2024.112702
  • 发表时间:
    2024-12-20
  • 期刊:
  • 影响因子:
  • 作者:
    Baoling Gui;Anshuman Bhardwaj;Lydia Sam
  • 通讯作者:
    Lydia Sam
From roofs to renewables: Deep learning and geographic information systems insights into a comprehensive urban solar photovoltaic assessment for Stonehaven
  • DOI:
    10.1016/j.energ.2024.100006
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Baoling Gui;Lydia Sam;Anshuman Bhardwaj
  • 通讯作者:
    Anshuman Bhardwaj

Anshuman Bhardwaj的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于"能源-环境-健康"框架的区域节能减排效率分析与提升研究-以长三角为例
  • 批准号:
    72304115
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于潜在结果框架和高维脑影像数据的因果中介分析理论和方法学研究
  • 批准号:
    82304241
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有机小分子插入共价有机框架调控电化学发光性能及对铀的分析新方法研究
  • 批准号:
    22376023
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于可解释Transformer框架分析真实临床数据预测克罗恩病生物制剂疗效的方法研究
  • 批准号:
    62371303
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
可液化场地地铁车站地下框架结构地震损伤风险分析方法研究
  • 批准号:
    52308506
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
  • 批准号:
    10797460
  • 财政年份:
    2023
  • 资助金额:
    $ 107.98万
  • 项目类别:
School Based Health Centers - An approach to address health disparities among rural youth.
学校健康中心 - 解决农村青年健康差距的一种方法。
  • 批准号:
    10801764
  • 财政年份:
    2023
  • 资助金额:
    $ 107.98万
  • 项目类别:
SCH: AI-Enhanced Multimodal Sensor-on-a-chip for Alzheimer's Disease Detection
SCH:用于阿尔茨海默病检测的人工智能增强型多模态芯片传感器
  • 批准号:
    10685378
  • 财政年份:
    2022
  • 资助金额:
    $ 107.98万
  • 项目类别:
SCH: AI-Enhanced Multimodal Sensor-on-a-chip for Alzheimer's Disease Detection
SCH:用于阿尔茨海默病检测的人工智能增强型多模态芯片传感器
  • 批准号:
    10437992
  • 财政年份:
    2022
  • 资助金额:
    $ 107.98万
  • 项目类别:
Development of a Mobile Health Personalized Physiologic Analytics Tool for Pediatric Patients with Sepsis
为脓毒症儿科患者开发移动健康个性化生理分析工具
  • 批准号:
    10268409
  • 财政年份:
    2021
  • 资助金额:
    $ 107.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了