CAREER: Modeling, Estimation and Coding for Biosensor Arrays

职业:生物传感器阵列的建模、估计和编码

基本信息

  • 批准号:
    0845730
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

Project AbstractThe investigator studies stochastic modeling and signal processing aspects of biosensor arrays. The biosensor arrays are time and cost efficient, and enable exciting new applications in medicine, drug discovery, defense systems, and environmental monitoring. Protein arrays, for instance, test for multiple pathogen infections by examining dozens of different antigens at once. DNA microarrays, on the other hand, are capable of screening tens or even hundreds of thousands of different gene sequences at the same time, revealing critical information about the functionality of cells, effects of drugs on organisms, etc. To fully realize the potentials of the biosensor array technology, however, several key research challenges must be addressed.Molecular binding between the bio-molecules of interest and sensing elements, which enables detection in biosensor arrays, is a random process. Real-time biosensors can take multiple temporal measurements of this process, thus allowing observation of the binding kinetics as well as a precise characterization of its steady-state. The investigator specifically aims to: (1) Develop stochastic models and solve the estimation problems in real-time biosensor arrays. This research involves solving parameter estimation problems in discretely observed systems modeled by stochastic differential equations. (2) Determine limits of performance of estimation algorithms in biosensor arrays, characterizing them via lower bounds on the minimum mean-square estimation error. (3) Develop coding strategies that improve the performance of biosensor arrays, and study signal recovery techniques which enable economic use of the sensing resources therein.The results of the outlined work are expected to have a major impact on the development and applications of biosensor arrays, and are expected to broaden the educational experience of engineering students at the University of Texas at Austin.
项目摘要:研究生物传感器阵列的随机建模和信号处理。生物传感器阵列具有时间和成本效益,并在医学,药物发现,防御系统和环境监测方面实现了令人兴奋的新应用。例如,蛋白质阵列通过同时检测几十种不同的抗原来检测多种病原体感染。另一方面,DNA微阵列能够同时筛选数万甚至数十万种不同的基因序列,揭示有关细胞功能,药物对生物体的影响等关键信息。然而,为了充分发挥生物传感器阵列技术的潜力,必须解决几个关键的研究挑战。感兴趣的生物分子与传感元件之间的分子结合是一个随机过程,从而使生物传感器阵列能够进行检测。实时生物传感器可以对这一过程进行多次时间测量,从而可以观察结合动力学以及对其稳态的精确表征。研究方向:(1)建立随机模型,解决实时生物传感器阵列的估计问题。本研究涉及解决由随机微分方程建模的离散观测系统的参数估计问题。(2)确定生物传感器阵列中估计算法的性能极限,通过最小均方估计误差的下界对其进行表征。(3)开发编码策略,提高生物传感器阵列的性能,研究信号恢复技术,使其能够经济地利用其中的传感资源。概述工作的结果预计将对生物传感器阵列的发展和应用产生重大影响,并有望拓宽德克萨斯大学奥斯汀分校工程专业学生的教育经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haris Vikalo其他文献

Haris Vikalo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haris Vikalo', 18)}}的其他基金

FET: Small: Accurate and Scalable Methods for Analysis of Complex Genomic Populations
FET:小型:用于分析复杂基因组群体的准确且可扩展的方法
  • 批准号:
    2109983
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RAPID: Methods for Reconstructing Disease Transmissions from Viral Genomic Data with Application to COVID-19
RAPID:从病毒基因组数据重建疾病传播的方法并应用于 COVID-19
  • 批准号:
    2027773
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AF: Small: Reconstructing Mixtures of DNA Sequences from High-Throughput Sequencing Data
AF:小:从高通量测序数据重建 DNA 序列混合物
  • 批准号:
    1618427
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RAPID: Methods for Estimating Genetic Diversity of the Ebola Virus
RAPID:估计埃博拉病毒遗传多样性的方法
  • 批准号:
    1507998
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AF: Small: Algorithms for Haplotype Assembly from Next-Generation Sequencing Data
AF:小:从下一代测序数据中进行单倍型组装的算法
  • 批准号:
    1320273
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CIF:Small:Next Generation DNA Sequencing: Signal Processing Perspectives
CIF:Small:下一代 DNA 测序:信号处理视角
  • 批准号:
    1018235
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: A Multi-dimensional Study of Electromagnetic Interference in Wide Bandgap Power Electronics: Modeling, Estimation, and Mitigation
职业:宽带隙电力电子中电磁干扰的多维研究:建模、估计和缓解
  • 批准号:
    2236846
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
  • 批准号:
    2225617
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Pretest and shrinkage estimation methods for joint modeling of linear mixed models and the AFT model
线性混合模型和AFT模型联合建模的预测试和收缩估计方法
  • 批准号:
    573853-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    University Undergraduate Student Research Awards
Efficient estimation in a novel hybrid model combining deep learning and joint modeling of longitudinal and time-to-event analysis for multimodal health data
结合深度学习和多模态健康数据纵向和事件时间分析联合建模的新型混合模型的有效估计
  • 批准号:
    559863-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Dependence Modeling in Insurance and Finance: Estimation, Ratemaking and Reserving
保险和金融中的依赖模型:估计、费率制定和准备金
  • 批准号:
    RGPIN-2021-04144
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Enabling Human-Aware and Responsive Automation through Cognitive State Modeling and Estimation
职业:通过认知状态建模和估计实现人类感知和响应式自动化
  • 批准号:
    2145827
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
DMS/NIGMS 1: Statistical modeling and estimation of cellular population dynamics
DMS/NIGMS 1:细胞群体动态的统计建模和估计
  • 批准号:
    10378318
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
DMS/NIGMS 1: Statistical modeling and estimation of cellular population dynamics
DMS/NIGMS 1:细胞群体动态的统计建模和估计
  • 批准号:
    10698147
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
RAPID: Sentinel-1 and ALOS-2 InSAR interferograms to support community modeling, mapping, and estimation of hazards from strike-slip and thrust fault interactions in Haiti.
RAPID:Sentinel-1 和 ALOS-2 InSAR 干涉图支持对海地走滑和逆冲断层相互作用造成的危害进行群落建模、测绘和估计。
  • 批准号:
    2150704
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Dependence Modeling in Insurance and Finance: Estimation, Ratemaking and Reserving
保险和金融中的依赖模型:估计、费率制定和准备金
  • 批准号:
    RGPIN-2021-04144
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了