CAREER: Enabling Human-Aware and Responsive Automation through Cognitive State Modeling and Estimation

职业:通过认知状态建模和估计实现人类感知和响应式自动化

基本信息

  • 批准号:
    2145827
  • 负责人:
  • 金额:
    $ 67.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development Program (CAREER) grant will fund research that enables autonomous systems such as machines, robots, and vehicles, to respond safely and collaboratively to human interactions, thereby promoting the progress of science, and advancing the national prosperity and welfare. Significant increases in automation are expected across the healthcare, manufacturing, and transportation sectors. Major challenges to the safe integration of automation in situations involving human participants are the lack of accurate mathematical models of human behavior, intent, and cognitive state, as well as of reliable ways of gathering relevant real-time data from humans. This project overcomes these challenges by building a new modeling framework that accounts for human cognitive constructs established within the social sciences, such as trust, workload, perceived risk, and self-confidence, while being amenable to rigorous mathematical analysis. It demonstrates how this framework can facilitate the design of sensing and control algorithms that can allow an autonomous system to determine, for example, how confident the human is in taking over a task, say during driving of an autonomous vehicle. Through close integration of research and education, the project will train engineering students to tackle questions surrounding socio-political and ethical challenges associated with the rapid expansion of automation in society. This will be achieved through new interdisciplinary coursework and recurrent immersive learning experiences that bring students together with state and federal policymakers. This research aims to develop the foundations of a control-theoretic framework for human-automation interaction that can use real-time data to continually improve prediction accuracy. It achieves this aim by defining a human cognitive state space and characterizing its dynamics in a model formulation that is compatible with standard tools of control design. A unique feature of this formulation is its interpretability, maintained by grounding the model in established conceptual frameworks governing human decision-making. A principled methodology for real-time parameter and cognitive state estimation will be created that blends information from multiple sensors with different capabilities and costs of querying, and enables adaptation to different individuals. A generalizable technique for exciting human cognitive dynamics, as well as guidelines for choosing the cognitive state estimation algorithm best suited for a particular human-automation interaction context, will be established. Laboratory and field experiments, including tests using trucks equipped with Level 1 driver assistance features, are planned for validation of the modeling framework and estimation algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展计划(CAREER)拨款将资助研究,使机器,机器人和车辆等自主系统能够安全和协作地响应人类互动,从而促进科学进步,促进国家繁荣和福利。预计医疗保健、制造业和运输业的自动化将大幅增加。在涉及人类参与者的情况下安全集成自动化的主要挑战是缺乏人类行为、意图和认知状态的准确数学模型,以及从人类收集相关实时数据的可靠方法。该项目通过构建一个新的建模框架来克服这些挑战,该框架考虑了社会科学中建立的人类认知结构,如信任,工作量,感知风险和自信,同时适合严格的数学分析。它展示了这个框架如何促进传感和控制算法的设计,这些算法可以让自动驾驶系统确定,例如,人类在接管任务时的信心,比如在驾驶自动驾驶汽车时。通过研究和教育的紧密结合,该项目将培养工程专业的学生,以解决与社会自动化快速扩张相关的社会政治和道德挑战。这将通过新的跨学科课程和经常性的沉浸式学习体验来实现,使学生与州和联邦政策制定者聚集在一起。这项研究旨在为人类与自动化交互的控制理论框架奠定基础,该框架可以使用实时数据来不断提高预测精度。它通过定义人类认知状态空间并在与控制设计的标准工具兼容的模型制定中表征其动态来实现这一目标。这种提法的一个独特之处是它的可解释性,通过将模型建立在管理人类决策的既定概念框架中来维持。将创建用于实时参数和认知状态估计的原则性方法,该方法将来自具有不同查询能力和成本的多个传感器的信息混合在一起,并能够适应不同的个体。一个通用的技术,激发人类的认知动力学,以及选择最适合于一个特定的人类自动化交互上下文的认知状态估计算法的指导方针,将建立。实验室和现场实验,包括使用配备1级驾驶员辅助功能的卡车进行的测试,计划用于验证建模框架和估计算法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neera Jain其他文献

A Computational Model of Coupled Human Trust and Self-confidence Dynamics
人类信任与自信动态耦合的计算模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Katherine J. Williams;Madeleine S. Yuh;Neera Jain
  • 通讯作者:
    Neera Jain
zonoLAB: A MATLAB toolbox for set-based control systems analysis using hybrid zonotopes
zonoLAB:使用混合 zonotopes 进行基于集合的控制系统分析的 MATLAB 工具箱
  • DOI:
    10.48550/arxiv.2310.15426
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Justin P. Koeln;Trevor J. Bird;Jacob A. Siefert;Justin Ruths;H. Pangborn;Neera Jain
  • 通讯作者:
    Neera Jain
Development and evaluation of a generalized rule-based control strategy for residential ice storage systems
  • DOI:
    10.1016/j.enbuild.2019.05.040
  • 发表时间:
    2019-08-15
  • 期刊:
  • 影响因子:
  • 作者:
    Aaron Tam;Davide Ziviani;James E. Braun;Neera Jain
  • 通讯作者:
    Neera Jain
On Modeling Human Trust in Automation: Identifying distinct dynamics through clustering of Markovian models
关于自动化中的人类信任建模:通过马尔可夫模型聚类识别不同的动态
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Griffon McMahon;K. Akash;Tahira Reid;Neera Jain
  • 通讯作者:
    Neera Jain
Inferring Takeover in SAE Level 2 Automated Vehicles Using Driver-Based Behavioral and Psychophysiological Signals
使用基于驾驶员的行为和心理生理信号来推断 SAE 2 级自动车辆的接管
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Konishi;Jacob G. Hunter;Z. Zheng;Teruhisa Misu;K. Akash;Tahira Reid;Neera Jain
  • 通讯作者:
    Neera Jain

Neera Jain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neera Jain', 18)}}的其他基金

EAGER: A Mathematical Framework for Increasing Trust in Human-Machine Interactions
EAGER:增强人机交互信任的数学框架
  • 批准号:
    1548616
  • 财政年份:
    2015
  • 资助金额:
    $ 67.38万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 67.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 67.38万
  • 项目类别:
    Standard Grant
Enabling translational studies and clinical entry plan in gastro-intestinal inflammatory diseases and cancers for human GPR35 antagonist lead molecules.
促进人类 GPR35 拮抗剂先导分子在胃肠道炎症性疾病和癌症方面的转化研究和临床进入计划。
  • 批准号:
    10068185
  • 财政年份:
    2023
  • 资助金额:
    $ 67.38万
  • 项目类别:
    Collaborative R&D
RII Track-4: NSF: Enabling Aberration-free Transcranial Photoacoustic Computed Tomography for Human Brain Imaging
RII Track-4:NSF:实现人脑成像的无像差经颅光声计算机断层扫描
  • 批准号:
    2229666
  • 财政年份:
    2023
  • 资助金额:
    $ 67.38万
  • 项目类别:
    Standard Grant
SCC-IRG Track 1: Advancing Human-Centered Sociotechnical Research for Enabling Independent Mobility in People with Physical Disabilities
SCC-IRG 第 1 轨道:推进以人为本的社会技术研究,以实现身体残疾人士的独立行动能力
  • 批准号:
    2124857
  • 财政年份:
    2022
  • 资助金额:
    $ 67.38万
  • 项目类别:
    Continuing Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Efficient Human-in-the-Loop Redaction of Language Development Corpora
EAGER:DCL:SaTC:实现跨学科协作:语言开发语料库的高效人机交互编辑
  • 批准号:
    2210193
  • 财政年份:
    2022
  • 资助金额:
    $ 67.38万
  • 项目类别:
    Standard Grant
Fostering and Enabling AI, Data and Robotics Technologies for Supporting Human Workers in Harvesting Wild Food
培育和启用人工智能、数据和机器人技术,支持人类工人收获野生食物
  • 批准号:
    10060010
  • 财政年份:
    2022
  • 资助金额:
    $ 67.38万
  • 项目类别:
    EU-Funded
Enabling the Roads Metaverse: Visualisation & Human Interaction
启用道路元宇宙:可视化
  • 批准号:
    2728220
  • 财政年份:
    2022
  • 资助金额:
    $ 67.38万
  • 项目类别:
    Studentship
Lowering the burden of medical translation by enabling international healthcare professionals as human editors of machine translations
让国际医疗保健专业人员担任机器翻译的人工编辑,减轻医学翻译的负担
  • 批准号:
    10603983
  • 财政年份:
    2022
  • 资助金额:
    $ 67.38万
  • 项目类别:
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Improving Human Discernment of Audio Deepfakes via Multi-level Information Augmentation
EAGER:DCL:SaTC:实现跨学科合作:通过多级信息增强提高人类对音频深赝品的识别能力
  • 批准号:
    2210011
  • 财政年份:
    2022
  • 资助金额:
    $ 67.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了