CAREER: Computational Identification of Gene Regulatory Networks in Multicellular Eukaryotes
职业:多细胞真核生物基因调控网络的计算识别
基本信息
- 批准号:0845823
- 负责人:
- 金额:$ 70.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(This award is funded through the American Recovery and Reinvestment Act of 2009: Public Law 111-5).This is a CAREER award to support the research of Dr. Sheng Zhong, in the Department of bioengineering at University of Illinois at Urbana-Champaign. Dr. Zhong is a fourth-year, tenure-track Assistant Professor. Understanding cellular processes, such as development and differentiation, requires understanding how cells control the rate of protein production, especially gene transcription. A gene regulatory network (GRN) is a collection of DNA segments in a genome, which interact with each other and with other substances in the cell, thereby governing the rates at which genes in a network are transcribed into messenger RNA. Most computational tools for identification of eukaryote GRNs were developed for the single cell eukaryote, Saccharomyces cerevisiae (baker's yeast). The complexity of GRNs in multicellular organisms and especially in vertebrates is several magnitudes greater than that of the yeast GRNs. The greater complexity arises from how genes are controlled by complex patterns of DNA regulatory elements, called cis-regulatory modules; how larger genome size provides a greater template for cis-regulatory modules to evolve; and the stochastic process of transcription, which is activated by the interaction of regulatory proteins and cis-regulatory modules. A new framework for the identification of GRNs in multicellular organisms is being developed by Dr. Zhong. Quantitative evolution models and joint models of gene expression and protein-DNA interaction data are being developed in this project. The project is advancing the state of the art of systems biology through developing a theoretical framework of eukaryote GRN evolution, a variety of GRN identification and analysis methods, prototype systems for analysis of genomic data, and through discovery of engineering principles in cell biology. Databases and tools produced under this project will be accessible via the PI?s website at http://bioinformatics.bioen.uiuc.edu/As a part of his CAREER plan, Dr. Zhong is training a new generation of interdisciplinary researchers by engaging undergraduate students in research; developing new courses and participating in outreach activities with Illinois middle school and high school students, including a bioinformatics camp for middle school girls, as one of the Girls Adventures in Mathematics, Engineering, and Science (G.A.M.E.S) camp program.
(This该奖项通过2009年美国复苏和再投资法案:公法111-5)资助。这是一个职业奖,以支持伊利诺伊大学厄巴纳-香槟分校生物工程系的钟盛博士的研究。钟博士是第四年,终身助理教授。了解细胞过程,如发育和分化,需要了解细胞如何控制蛋白质的产生速度,特别是基因转录。基因调控网络(GRN)是基因组中DNA片段的集合,它们彼此相互作用并与细胞中的其他物质相互作用,从而控制网络中基因转录成信使RNA的速率。大多数用于鉴定真核生物GRNs的计算工具是针对单细胞真核生物酿酒酵母(Saccharomyces cerevisiae)(面包酵母)开发的。在多细胞生物体中,特别是在脊椎动物中,GRNs的复杂性比酵母GRNs的复杂性大几个数量级。更大的复杂性来自于基因如何被称为顺式调控模块的DNA调控元件的复杂模式控制;更大的基因组大小如何为顺式调控模块进化提供更大的模板;以及转录的随机过程,其由调控蛋白和顺式调控模块的相互作用激活。钟博士正在开发一种新的框架,用于识别多细胞生物中的GRNs。该项目正在开发基因表达和蛋白质-DNA相互作用数据的定量进化模型和联合模型。该项目通过开发真核生物GRN进化的理论框架,各种GRN识别和分析方法,用于分析基因组数据的原型系统,以及通过发现细胞生物学中的工程原理,推进系统生物学的最新技术。该项目下生成的数据库和工具将通过PI访问?http://bioinformatics.bioen.uiuc.edu/As作为他职业生涯计划的一部分,钟博士正在培养新一代的跨学科研究人员,方法是让本科生参与研究;开发新课程,并参加伊利诺伊州初中和高中学生的外联活动,包括为中学女生举办的生物信息学夏令营,作为数学、工程和科学女孩冒险(G.A.M.E.S)夏令营计划之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheng Zhong其他文献
Bayesian Method of Borrowing Study-Level Historical Longitudinal Control Data for Mixed-Effects Models with Repeated Measures
借用研究级历史纵向控制数据用于重复测量混合效应模型的贝叶斯方法
- DOI:
10.1007/s43441-022-00449-2 - 发表时间:
2022 - 期刊:
- 影响因子:1.5
- 作者:
Hong Li;Man Jin;Yu;Sheng Zhong;Li Wang - 通讯作者:
Li Wang
New Natural Compound Inhibitors of Checkpoint Kinase-1(CHK1) Based on Computational Study
基于计算研究的新型天然复合检查点激酶-1(CHK1)抑制剂
- DOI:
10.21203/rs.3.rs-509168/v1 - 发表时间:
2021 - 期刊:
- 影响因子:11.1
- 作者:
Hui Li;Jianxin Xi;Zhenhua Wang;Hannah Lu;Zhi;Bo Wu;Sheng Zhong;Yida Peng;Y. Mou - 通讯作者:
Y. Mou
Color correction using weighted moving least squares in image mosaicking applications
在图像镶嵌应用中使用加权移动最小二乘进行颜色校正
- DOI:
10.1117/12.2284770 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Chengcai Du;Sheng Zhong - 通讯作者:
Sheng Zhong
An improved multi-paths optimization method for video stabilization
一种改进的视频稳定多路径优化方法
- DOI:
10.1117/12.2284442 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Tao Qin;Sheng Zhong - 通讯作者:
Sheng Zhong
Novel natural inhibitors targeting KRAS G12C by computational study
通过计算研究发现针对 KRAS G12C 的新型天然抑制剂
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.3
- 作者:
Yuting Jiang;Wanting Chen;Xinhui Wang;Baolin Zhou;Haoqun Xie;Y. Hou;Zhen Guo;Bo Yu;Sheng Zhong;Xing Su - 通讯作者:
Xing Su
Sheng Zhong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheng Zhong', 18)}}的其他基金
Modeling the Evolution of Gene Regulatory Modules for Complex Traits
复杂性状基因调控模块进化建模
- 批准号:
0960583 - 财政年份:2010
- 资助金额:
$ 70.92万 - 项目类别:
Standard Grant
NetSE: Small: Cooperation and Security for Opportunistic-Coding-based Wireless Networks
NetSE:小型:基于机会编码的无线网络的合作与安全
- 批准号:
0915374 - 财政年份:2009
- 资助金额:
$ 70.92万 - 项目类别:
Standard Grant
CAREER: Enforceable Economic Mechanisms for Cooperation in Wireless Networks
职业:无线网络合作的可执行经济机制
- 批准号:
0845149 - 财政年份:2009
- 资助金额:
$ 70.92万 - 项目类别:
Continuing Grant
Collaborative Research: Molecular basis of life history evolution in Drosophila
合作研究:果蝇生命史进化的分子基础
- 批准号:
0848386 - 财政年份:2009
- 资助金额:
$ 70.92万 - 项目类别:
Standard Grant
Collaborative Research: CT-ISG: Incentive-Compatible Protocols
合作研究:CT-ISG:激励兼容协议
- 批准号:
0524030 - 财政年份:2005
- 资助金额:
$ 70.92万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational and machine learning methods for model reduction, uncertainty propagation, and parameter identification in fluid and solid mechanics
流体和固体力学中模型简化、不确定性传播和参数识别的计算和机器学习方法
- 批准号:
RGPIN-2021-02693 - 财政年份:2022
- 资助金额:
$ 70.92万 - 项目类别:
Discovery Grants Program - Individual
Complementary animal and computational models for biomarker identification in ascending thoracic aortic aneurysm
升主动脉瘤生物标志物识别的补充动物和计算模型
- 批准号:
10503513 - 财政年份:2022
- 资助金额:
$ 70.92万 - 项目类别:
Identification and characterization of cancer cell states by novel computational and experimental technologies - Resubmission - 1
通过新颖的计算和实验技术识别和表征癌细胞状态 - 重新提交 - 1
- 批准号:
10650774 - 财政年份:2022
- 资助金额:
$ 70.92万 - 项目类别:
Complementary animal and computational models for biomarker identification in ascending thoracic aortic aneurysm
升主动脉瘤生物标志物识别的补充动物和计算模型
- 批准号:
10646286 - 财政年份:2022
- 资助金额:
$ 70.92万 - 项目类别:
Identification and characterization of cancer cell states by novel computational and experimental technologies - Resubmission - 1
通过新颖的计算和实验技术识别和表征癌细胞状态 - 重新提交 - 1
- 批准号:
10448890 - 财政年份:2022
- 资助金额:
$ 70.92万 - 项目类别:
Computational and machine learning methods for model reduction, uncertainty propagation, and parameter identification in fluid and solid mechanics
流体和固体力学中模型简化、不确定性传播和参数识别的计算和机器学习方法
- 批准号:
RGPIN-2021-02693 - 财政年份:2021
- 资助金额:
$ 70.92万 - 项目类别:
Discovery Grants Program - Individual
Development of novel computational method for identification of druggable cryptic pocket on protein surface
开发新的计算方法来识别蛋白质表面可成药的隐秘口袋
- 批准号:
20K15974 - 财政年份:2020
- 资助金额:
$ 70.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identification of Master Transcription Factors of Dental Epithelial Stem Cell by Computational Method
计算方法鉴定牙上皮干细胞主转录因子
- 批准号:
10037827 - 财政年份:2020
- 资助金额:
$ 70.92万 - 项目类别:
Identification of Master Transcription Factors of Dental Epithelial Stem Cell by Computational Method
计算方法鉴定牙上皮干细胞主转录因子
- 批准号:
10239100 - 财政年份:2020
- 资助金额:
$ 70.92万 - 项目类别:
A Computational Framework for Protein Identification and Quantification in Metaproteomics Using Data-Independent Acquisition
使用数据独立采集进行元蛋白质组学蛋白质鉴定和定量的计算框架
- 批准号:
10047086 - 财政年份:2020
- 资助金额:
$ 70.92万 - 项目类别:














{{item.name}}会员




