Complementary animal and computational models for biomarker identification in ascending thoracic aortic aneurysm
升主动脉瘤生物标志物识别的补充动物和计算模型
基本信息
- 批准号:10503513
- 负责人:
- 金额:$ 62.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AgeAneurysmAnimal ModelAortaAutopsyBiological MarkersBiomechanicsBiophysicsBlood flowCadaverCaliberCategoriesCessation of lifeClinicalComputer ModelsComputer SystemsCoupledDangerousnessDataDisease OutcomeDissectionEquilibriumEventExperimental ModelsFailureGeneticGeometryGrowthGuidelinesHumanImageIndividualInterventionLiquid substanceLiteratureLongitudinal StudiesMachine LearningMarfan SyndromeMechanicsModelingMonitorMusOperative Surgical ProceduresOutcomePatient imagingPatient-Focused OutcomesPatientsPrincipal Component AnalysisPublishingReproducibilityRiskRuptureScanningShapesSolidStressSystemTestingThoracic Aortic AneurysmTimeTissue ModelTissuesTrainingWorkbasebiomarker identificationcardiovascular healthcostexperienceexperimental studyfallshemodynamicshuman datahuman tissuemechanical propertiesmouse modelnoveloutcome predictionpublic health relevancerepairedsimulationsurgical risktoolvirtualvirtual humanvirtual patient
项目摘要
ABSTRACT
Ascending thoracic aortic aneurysm (ATAA) is a major cardiovascular health problem characterized by
a dilated aorta that may eventually dissect or rupture. ATAA presents a serious challenge in that the surgery is
difficult and dangerous, so aneurysm repair criteria must balance the risk of a dissection and/or rupture with
the risk of surgery. Current surgical guidelines are based on ATAA diameter or growth rate, but up to 60% of
patients with an ATAA experience a dissection before surgical criteria are reached, hence there is a clear need
for additional biomarkers of aneurysm failure. Possible biomarkers fall into broad categories including genetic,
microstructural, geometrical, and biofluids, but it is challenging to obtain enough human data to calculate and
correlate these biomarkers with critical outcomes such as failure. It is likely that a single biomarker is not
sufficient, but composite biomarkers that are not intuitively obvious may be necessary for significant predictions
of patient outcomes. In this proposal we will use a combination of models: 1) a mouse model of ATAA
associated with Marfan Syndrome, 2) a multiscale, multiphysics model of ATAA growth and remodeling, and 3)
virtual patient models derived from real patient imaging data, to determine composite biomarkers that may
predict ATAA growth, progression, and failure. Our first Specific Aim is to use a genetic mouse model of ATAA
associated with Marfan Syndrome to characterize aneurysm progression and failure in previously unachieved
detail, quantifying aortic shape, tissue composition, tissue mechanical properties, and hemodynamics over
time. This level of detail is not possible in human patients and is necessary to validate and test hypotheses on
the growth and remodeling rules in our multiscale, multiphysics model in Specific Aim 2 and to provide an initial
set of biomarkers to evaluate for our virtual patients in Specific Aim 3. Our second Specific Aim is to develop a
novel multiscale, multiphysics computational model of ATAA growth and remodeling to produce results that will
be compared to the mouse data in Specific Aim 1 and used to predict remodeling progression in real and
virtual human patients in Specific Aim 3. In our third Specific Aim, we will use available human ATAA scans
from Marfan Syndrome patients to generate a statistical shape model basis for the ATAA geometry, and we will
use that basis to generate virtual patients, whose TAA course throughout progression and failure will be
created by the model in Specific Aim 2, with parameters determined from published literature and our mouse
data in Specific Aim 1. Both real and virtual patient data will then be used to train a machine learning tool to
relate the composite biomarkers to the remodeling outcomes and predict failure risk. This plan synthesizes
multiple recent advances and supplements them with new ideas to produce a computer system capable of
making useful failure predictions for ATAA.
摘要
升胸主动脉瘤(ATAA)是一种主要的心血管健康问题,其特征在于:
一种最终可能分离或破裂的扩张的主动脉。ATAA提出了一个严重的挑战,因为手术是
困难和危险,因此动脉瘤修复标准必须平衡夹层和/或破裂的风险,
手术的风险。目前的手术指南是基于ATAA直径或生长速度,但高达60%的
ATAA患者在达到手术标准之前经历夹层,因此明确需要
动脉瘤衰竭的其他生物标志物。可能的生物标志物分为广泛的类别,
微观结构,几何和生物流体,但它是具有挑战性的,以获得足够的人类数据来计算和
将这些生物标志物与失败等关键结果相关联。很可能一个单一的生物标志物不是
足够的,但直观上不明显的复合生物标志物可能是重要预测所必需的
患者的结果。在本提案中,我们将使用模型的组合:1)ATAA小鼠模型
与马凡氏综合征相关,2)ATAA生长和重塑的多尺度、多物理模型,以及3)
从真实的患者成像数据导出的虚拟患者模型,以确定复合生物标志物,
预测ATAA的生长、进展和失败。我们的第一个具体目标是使用遗传小鼠模型的ATAA
与马凡氏综合征相关,以表征动脉瘤进展和失败,
详细信息,量化主动脉形状,组织成分,组织机械特性和血流动力学,
时间这种程度的细节在人类患者中是不可能的,并且对于验证和测试以下假设是必要的:
在我们的多尺度,多物理场模型在特定目标2的增长和重塑规则,并提供一个初步的
一组生物标志物,以评估我们在特定目标3中的虚拟患者。我们的第二个具体目标是开发一个
ATAA生长和重塑的新型多尺度、多物理场计算模型,
与特定目标1中的小鼠数据进行比较,并用于预测真实的和
《特殊目标3》中的虚拟人患者在我们的第三个具体目标,我们将使用现有的人类ATAA扫描
从马凡氏综合征患者生成一个统计形状模型的基础上ATAA几何,我们将
使用该基础来生成虚拟患者,其TAA进程在整个进展和失败过程中将
由特定目标2中的模型创建,参数由已发表的文献和我们的小鼠确定
具体目标1。然后,将使用真实的和虚拟的患者数据来训练机器学习工具,
将复合生物标志物与重塑结果联系起来并预测失败风险。该计划综合了
多个最近的进展,并补充他们的新想法,以产生一个计算机系统,能够
为ATAA做出有用的故障预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VICTOR H BAROCAS其他文献
VICTOR H BAROCAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VICTOR H BAROCAS', 18)}}的其他基金
SPINE-WORK: An inclusive research community to study and improve force-based manipulations for spine pain
SPINE-WORK:一个包容性研究社区,致力于研究和改进基于力量的脊柱疼痛治疗方法
- 批准号:
10612059 - 财政年份:2022
- 资助金额:
$ 62.38万 - 项目类别:
Complementary animal and computational models for biomarker identification in ascending thoracic aortic aneurysm
升主动脉瘤生物标志物识别的补充动物和计算模型
- 批准号:
10646286 - 财政年份:2022
- 资助金额:
$ 62.38万 - 项目类别:
SPINE-WORK: An inclusive research community to study and improve force-based manipulations for spine pain
SPINE-WORK:一个包容性研究社区,致力于研究和改进基于力量的脊柱疼痛治疗方法
- 批准号:
10458296 - 财政年份:2022
- 资助金额:
$ 62.38万 - 项目类别:
TRACTOR: A Computational Platform to Explore Matrix-Mediated Mechanical Communication among Cells
TRACTOR:探索细胞间基质介导的机械通信的计算平台
- 批准号:
10515967 - 财政年份:2022
- 资助金额:
$ 62.38万 - 项目类别:
TRACTOR: A Computational Platform to Explore Matrix-Mediated Mechanical Communication among Cells
TRACTOR:探索细胞间基质介导的机械通讯的计算平台
- 批准号:
10707957 - 财政年份:2022
- 资助金额:
$ 62.38万 - 项目类别:
Multidisciplinary training in cardiovascular engineering
心血管工程多学科培训
- 批准号:
10208935 - 财政年份:2019
- 资助金额:
$ 62.38万 - 项目类别:
Multidisciplinary training in cardiovascular engineering
心血管工程多学科培训
- 批准号:
10468303 - 财政年份:2019
- 资助金额:
$ 62.38万 - 项目类别:
Multidisciplinary training in cardiovascular engineering
心血管工程多学科培训
- 批准号:
10646305 - 财政年份:2019
- 资助金额:
$ 62.38万 - 项目类别:
Multiscale Model of Ascending Thoracic Aortic Aneurysm
升胸主动脉瘤的多尺度模型
- 批准号:
10181130 - 财政年份:2018
- 资助金额:
$ 62.38万 - 项目类别:
Multiscale Model of Ascending Thoracic Aortic Aneurysm
升胸主动脉瘤的多尺度模型
- 批准号:
10220118 - 财政年份:2018
- 资助金额:
$ 62.38万 - 项目类别:
相似海外基金
Establishment of human abdominal aortic aneurysm wall strength prediction model using Ex Vivo Superparamagnetic Iron Oxide–Enhanced Magnetic Resonance Imaging
利用Ex Vivo超顺磁性氧化铁建立人体腹主动脉瘤壁强度预测模型
- 批准号:
23K08226 - 财政年份:2023
- 资助金额:
$ 62.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 62.38万 - 项目类别:
Vascular Smooth Muscle Protein Quality Control and Aortic Aneurysm Formation
血管平滑肌蛋白质量控制与主动脉瘤形成
- 批准号:
10714562 - 财政年份:2023
- 资助金额:
$ 62.38万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 62.38万 - 项目类别:
Role of mechanical heterogeneity in cerebral aneurysm growth and rupture
机械异质性在脑动脉瘤生长和破裂中的作用
- 批准号:
10585539 - 财政年份:2023
- 资助金额:
$ 62.38万 - 项目类别:
Study on development of prophylaxis for recanalization after coil embolization of cerebral aneurysm and elucidation of its mechanisms
脑动脉瘤弹簧圈栓塞术后再通预防措施的研究进展及机制阐明
- 批准号:
23K08512 - 财政年份:2023
- 资助金额:
$ 62.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Roles of aging and cellular senescence in the development of intracranial aneurysm rupture
衰老和细胞衰老在颅内动脉瘤破裂发展中的作用
- 批准号:
10680060 - 财政年份:2023
- 资助金额:
$ 62.38万 - 项目类别:
Role of Selective Autophagy of Focal Adhesion in Intracranial Aneurysm
局部粘连选择性自噬在颅内动脉瘤中的作用
- 批准号:
10586692 - 财政年份:2023
- 资助金额:
$ 62.38万 - 项目类别:
Vascular smooth muscle cell ferroptosis and abdominal aortic aneurysm
血管平滑肌细胞铁死亡与腹主动脉瘤
- 批准号:
10733477 - 财政年份:2023
- 资助金额:
$ 62.38万 - 项目类别:
Extracellular Vesicle Delivery System for Treatment of Abdominal Aortic Aneurysm
细胞外囊泡递送系统治疗腹主动脉瘤
- 批准号:
10751123 - 财政年份:2023
- 资助金额:
$ 62.38万 - 项目类别: