CAREER: Educational Data Mining for Student Support in Interactive Learning Environments
职业:在交互式学习环境中为学生提供教育数据挖掘支持
基本信息
- 批准号:0845997
- 负责人:
- 金额:$ 64.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Creating intelligent learning technologies from data has unique potential to transform the American educational system, by building a low cost way to adapt learning environments to individual students, while informing research on human learning. This project will create the technology for a new generation of data-driven intelligent tutors, enabling the rapid creation of individualized instruction to support learning in science, technology, engineering, and mathematics (STEM) fields. This has the potential to make individualized learning support accessible for a broad audience, from children to adults, including students that are traditionally underrepresented in STEM fields. This project will (1) develop computational methods to derive cognitive models from data that can be used to support individual learners through guidance, feedback, and help; (2) develop approaches to providing student support that leverage data to provide hints and guidance based on information such as frequency of student responses, probability of future errors, and solution efficiency; (3) develop interactive visualization tools for teachers to learn from student data in real time, to allow teachers and instructional designers to tailor instruction to address actual, rather than perceived, student problem areas; and (4) conduct formal empirical evaluations of pedagogical effectiveness. The new software will construct adaptive support for teaching and learning in logic, discrete mathematics, and other STEM domains using a data-driven approach. From the extensive but tractable student performance data in computer-aided learning environments, student cognitive models will be automatically constructed. These cognitive models will build on the investigator's prior work using Markov Decision Processes and dimensionality reduction methods that leverage past data to assess student performance, direct a student?s learning path, and provide contextualized hints. Machine learning techniques will be used to expand problem-specific models into more general cognitive models to bootstrap the construction of new tutors and learn about student learning. For teachers and learning researchers, web-based visualization and analysis tool will be developed to graphically and interactively model student solutions annotated with performance data that reflect frequency, tendency to commit future errors, and closeness to a final solution. Through these new tutors and tools, experiments will be conducted to investigate student learning in a variety of contexts and domains, including logic, algebra, and chemistry. A team of diverse students and colleagues will be engaged to bring interdisciplinary expertise to this research and share findings broadly.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。从数据中创建智能学习技术具有独特的潜力,可以通过建立一种低成本的方式来改变美国教育系统,使学习环境适应个别学生,同时为人类学习研究提供信息。该项目将为新一代数据驱动的智能导师创造技术,从而快速创建个性化教学,以支持科学,技术,工程和数学(STEM)领域的学习。这有可能使从儿童到成人的广泛受众获得个性化的学习支持,包括传统上在STEM领域代表性不足的学生。该项目将(1)开发计算方法,从数据中导出认知模型,通过指导,反馈和帮助来支持个人学习者;(2)开发提供学生支持的方法,利用数据提供基于学生响应频率,未来错误概率和解决方案效率等信息的提示和指导;(3)开发交互式可视化工具,使教师能够从真实的学生数据中学习,使教师和教学设计者能够针对实际而不是感知的学生问题领域调整教学;(4)对教学效果进行正式的经验评估。 新软件将使用数据驱动的方法为逻辑,离散数学和其他STEM领域的教学和学习构建自适应支持。从广泛的,但易于处理的学生在计算机辅助学习环境中的表现数据,学生的认知模型将被自动构建。这些认知模型将建立在调查员的先前工作,使用马尔可夫决策过程和降维方法,利用过去的数据来评估学生的表现,指导学生?的学习路径,并提供情境化的提示。机器学习技术将用于将特定问题模型扩展为更通用的认知模型,以引导新导师的构建并了解学生的学习情况。为教师和学习研究人员,基于网络的可视化和分析工具将开发图形和交互式模型的学生解决方案与性能数据,反映频率,倾向于犯未来的错误,并接近最终的解决方案注释。通过这些新的导师和工具,将进行实验,以调查学生在各种背景和领域,包括逻辑,代数和化学的学习。一个由不同的学生和同事组成的团队将致力于为这项研究带来跨学科的专业知识,并广泛分享研究结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Ribarsky其他文献
Martin Ribarsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Ribarsky', 18)}}的其他基金
DAT: A Visual Analytics Approach to Science and Innovation Policy
DAT:科学与创新政策的可视化分析方法
- 批准号:
0915528 - 财政年份:2009
- 资助金额:
$ 64.7万 - 项目类别:
Standard Grant
Integrating 3D Dynamic Meteorological Data and Algorithms into a Scalable Geospatial Framework
将 3D 动态气象数据和算法集成到可扩展的地理空间框架中
- 批准号:
9982299 - 财政年份:2000
- 资助金额:
$ 64.7万 - 项目类别:
Standard Grant
Proposal for Installation and Operation of NSFNET Node at Georgia Tech
关于在佐治亚理工学院安装和运行 NSFNET 节点的提案
- 批准号:
9000460 - 财政年份:1990
- 资助金额:
$ 64.7万 - 项目类别:
Standard Grant
Oxygen, Sulfur, and Carbon Chemisorbed on Iron Using Angle Resolved Photoemission
利用角分辨光电发射将氧、硫和碳化学吸附在铁上
- 批准号:
7722851 - 财政年份:1978
- 资助金额:
$ 64.7万 - 项目类别:
Standard Grant
相似海外基金
Parental Social Class and Children's Educational Outcomes: A Longitudinal Analysis of the Millennium Cohort Study and Administrative Data
父母社会阶层与儿童教育成果:千年队列研究和行政数据的纵向分析
- 批准号:
ES/X012085/1 - 财政年份:2024
- 资助金额:
$ 64.7万 - 项目类别:
Research Grant
GOAL project: AI-supported self-directed learning lifestyle in data-rich educational ecosystem
GOAL 项目:数据丰富的教育生态系统中人工智能支持的自主学习生活方式
- 批准号:
23K25156 - 财政年份:2024
- 资助金额:
$ 64.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Incubating Infrastructure to Improve STEM Learning by Leveraging Data from Digital Educational Games
利用数字教育游戏的数据孵化基础设施以改善 STEM 学习
- 批准号:
2243668 - 财政年份:2023
- 资助金额:
$ 64.7万 - 项目类别:
Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
- 批准号:
2301173 - 财政年份:2023
- 资助金额:
$ 64.7万 - 项目类别:
Continuing Grant
Development of Deep-IRT for educational big data analysis
用于教育大数据分析的 Deep-IRT 开发
- 批准号:
22KJ1368 - 财政年份:2023
- 资助金额:
$ 64.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
- 批准号:
2301172 - 财政年份:2023
- 资助金额:
$ 64.7万 - 项目类别:
Continuing Grant
Development of Extraction, Share and Use of Evidences from Real-world Educational Data
从现实世界的教育数据中提取、共享和使用证据的发展
- 批准号:
23H00505 - 财政年份:2023
- 资助金额:
$ 64.7万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
AI-Based Support System for Problem Creation and Sharing by Learners and Teachers using Educational Data Analysis
基于人工智能的支持系统,用于学习者和教师使用教育数据分析创建和共享问题
- 批准号:
23K17012 - 财政年份:2023
- 资助金额:
$ 64.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Data Science for Educational Leaders to Effectively Develop Cognitive and Noncognitive Skills
数据科学帮助教育领导者有效培养认知和非认知技能
- 批准号:
23H00921 - 财政年份:2023
- 资助金额:
$ 64.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Urbanization, educational expansion and income inequality in Asian developing countries: An analysis based on household survey data
亚洲发展中国家的城市化、教育扩张与收入不平等:基于家庭调查数据的分析
- 批准号:
23K01409 - 财政年份:2023
- 资助金额:
$ 64.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)