CAREER: Interfaces and Their Effect on Charge Transfer in Extremely Thin Absorber Solar Cells
职业:极薄吸收太阳能电池中的界面及其对电荷转移的影响
基本信息
- 批准号:0846464
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0846464BaxterThe research objective of this renewable energy related CAREER proposal is to investigate nano-structured interfaces, material properties, and their effect on electron charge transfer in extremely thin absorber (ETA) solar cells. ETA cells will be economically competitive with fossil fuels at their predicted efficiencies of 15% because they can be produced by low-cost solution methods. However, demonstrated ETA cell efficiencies are only 2.5%. The discrepancy between realized and predicted efficiency is due to lack of fundamental understanding of the role of interfaces and material properties on charge transfer processes within the cell. ETA cells employ a mesoporous n-type semiconductor coated at the interface with a thin absorber film, with pores filled by a p-type semiconductor to create an interpenetrating heterojunction. The operating principle of the ETA cell is that the large junction area presented by an n-type nanowire array allows thin absorber layers to be used, such that charge separation across the interfaces is faster than competing bulk recombination. Nanowires are also the ideal geometry to quickly transport the separated charges to opposite contacts before they can undergo interfacial recombination. To date, ETA cells have primarily been studied by making solar cells and measuring their I-V characteristics, with few fundamental studies of either the individual materials and interfaces or charge transport within the cell. The proposed approach will use a combination of spectroscopy and electron microscopy of individual materials and interfaces as well as steady-state and perturbation studies of ETA solar cells to gain fundamental insight into charge transfer mechanisms in the ZnO-nanowire/CdSe/CuSCN materials system. Techniques including impedance spectroscopy, intensity-modulated photocurrent spectroscopy, and time-resolved terahertz spectroscopy will be employed to (1) measure carrier lifetime and mobility in individual materials and thin film stacks, (2) measure characteristic times to compare charge separation vs bulk recombination and charge transport vs. interfacial recombination, (3) determine processes that limit cell performance, and (4) design interfaces and material properties to improve charge transfer and, hence, increase ETA cell efficiency. Intellectual Merit: The transformational, spectroscopy-driven approach described in this proposal will be applied to ETA cells for the first time in order to understand the bulk and interfacial phenomena that govern cell performance. This work will explore the nature of charge transfer across nano-structured semiconductor interfaces, specifically focusing on the role of architecture, defect structure, and electronic band structure. Solution methods of depositing extremely thin coatings of high quality and precise thickness will be developed. Ex situ characterization of materials and interfaces will be combined with measurements of ETA cells to identify the properties or processes that limit cell efficiencies. This detailed understanding, which cannot be achieved using conventional methods, will allow comparison of experimental observations with theoretical predictions and will aid in the design of materials, interfaces, and molecular architectures that enable higher energy conversion efficiencies. Broader Impact: If successful, the proposed renewable energy related work will provide the fundamental understanding of interfacial phenomena that is necessary to increase efficiencies of solar cells from 2.5% toward the 15% predicted by theory. Such an improvement could potentially transform ETA cell technology to be economically competitive with fossil fuels. Low-cost ETA cells would provide a source of clean, secure, sustainable energy that could shift the U.S. portfolio away from fossil fuels and toward energy independence. The design principles learned from the CdSe system can be applied to other absorbers such as CuInGaSe2 for even higher potential efficiency. Additionally, the enhanced understanding of charge transfer at nano-structured semiconductor heterojunctions will be useful for many other nano-structured systems where controlling interfaces is critical to achieving high performance. These applications include organic-inorganic solar cells, displays, electrochromics, and batteries, all of which are important for sustainable energy or energy efficiency. The novel experimental approach described in this proposal can be employed by other researchers to enable new advances in a broad range science and technology fields. The educational objectives of this proposal are to educate students through research activities and curriculum development and to expose people of diverse ages and backgrounds to general concepts in renewable energy. A "Solar Energy Seminar Series" will be established to engage the general Drexel community; and an "Energy and Sustainability Workshop" for 5th-6th grade students and their teachers will be initiated in partnership with the School District of Philadelphia. This workshop will naturally be directed toward underrepresented groups since the district is over 80% African-American and Hispanic and will involve 100 students and 25 teachers over 5 years.This project is jointly supported by the Interfacial Processes and Thermodynamics program and the Sustainable Energy program in the NSF CBET Division.
这项与可再生能源相关的CAREER提案的研究目标是研究纳米结构界面、材料特性及其对超薄吸收体(ETA)太阳能电池中电子电荷转移的影响。预计ETA电池的效率为15%,与化石燃料相比具有经济竞争力,因为它们可以通过低成本的溶液方法生产。然而,证明的ETA电池效率仅为2.5%。实现和预测的效率之间的差异是由于缺乏基本的理解的作用,界面和材料性能的细胞内的电荷转移过程。ETA电池采用介孔n型半导体,其在界面处涂覆有薄吸收膜,其中孔由p型半导体填充以产生互穿异质结。ETA电池的工作原理是由n型纳米线阵列提供的大结面积允许使用薄的吸收层,使得跨界面的电荷分离比竞争性体复合更快。纳米线也是理想的几何形状,可以在分离的电荷进行界面复合之前将它们快速传输到相对的触点。迄今为止,ETA电池主要通过制造太阳能电池并测量其I-V特性来研究,很少对单个材料和界面或电池内的电荷传输进行基础研究。拟议的方法将结合使用单个材料和界面的光谱学和电子显微镜以及ETA太阳能电池的稳态和微扰研究,以获得对ZnO纳米线/CdSe/CuSCN材料系统中电荷转移机制的基本见解。包括阻抗光谱、强度调制光电流光谱和时间分辨太赫兹光谱的技术将用于(1)测量单个材料和薄膜堆叠中的载流子寿命和迁移率,(2)测量特征时间以比较电荷分离与体复合以及电荷传输与界面复合,(3)确定限制电池性能的工艺,以及(4)设计界面和材料性质以改善电荷转移,并因此增加ETA电池效率。智力优势:本提案中描述的转换,光谱驱动的方法将首次应用于ETA电池,以了解控制电池性能的体积和界面现象。这项工作将探讨跨纳米结构的半导体界面的电荷转移的性质,特别是专注于架构,缺陷结构和电子能带结构的作用。将开发沉积高质量和精确厚度的极薄涂层的解决方案方法。材料和界面的非原位表征将与ETA电池的测量相结合,以确定限制电池效率的特性或过程。这种使用传统方法无法实现的详细理解将允许将实验观察与理论预测进行比较,并将有助于设计能够实现更高能量转换效率的材料,界面和分子结构。更广泛的影响:如果成功,拟议的可再生能源相关工作将提供对界面现象的基本理解,这对于将太阳能电池的效率从2.5%提高到理论预测的15%是必要的。这种改进可能会改变ETA电池技术,使其在经济上与化石燃料竞争。低成本的ETA电池将提供一种清洁、安全、可持续的能源,可以使美国的能源组合从化石燃料转向能源独立。从CdSe系统学到的设计原理可以应用于其他吸收体,如CuInGaSe 2,以获得更高的潜在效率。此外,在纳米结构的半导体异质结的电荷转移的增强的理解将是有用的许多其他纳米结构的系统中,控制接口是至关重要的,以实现高性能。这些应用包括有机-无机太阳能电池、显示器、电致变色和电池,所有这些对于可持续能源或能源效率都很重要。该提案中描述的新实验方法可以被其他研究人员采用,以实现广泛的科学和技术领域的新进展。这项建议的教育目标是通过研究活动和课程开发教育学生,并使不同年龄和背景的人了解可再生能源的一般概念。将建立一个“太阳能研讨会系列”,让德雷克塞尔社区参与进来;将与费城学区合作,为5 - 6年级学生及其教师举办一个“能源和可持续性研讨会”。这个研讨会将自然地针对代表性不足的群体,因为该地区超过80%的非洲裔美国人和西班牙裔,并将涉及100名学生和25名教师超过5年。这个项目是由界面过程和热力学计划和可持续能源计划在NSF CBET司联合支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Baxter其他文献
9: Performance of a proteomic preterm delivery predictor in a large independent prospective cohort
- DOI:
10.1016/j.ajog.2019.11.025 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:
- 作者:
Glenn Markenson;George R. Saade;Louise C. Laurent;Kent Heyborne;Dean Coonrod;Corina N. Schoen;Jason Baxter;David M. Haas;Sherri Longo;William A. Grobman;Carol scott sullivan;Sarahn M. Major;leonardo Wheeler;Kim Pereira;Emily Boggess;Angela Su;Amy Hawk;Angela Crockett;Julja Fox; Burchard - 通讯作者:
Burchard
Disparities in contraception in women with cardiovascular diseases in the cardiac-obstetrical clinic
- DOI:
10.1016/j.ajog.2022.11.1140 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Laura E. Fiorini;Maria De Abreu Pineda;Jason Baxter;Rebekah McCurdy;Andria Jones;Indranee Rajapreyar;Amanda Roman - 通讯作者:
Amanda Roman
14: Enhanced preterm delivery predictors: verification in a large independent prospective cohort
- DOI:
10.1016/j.ajog.2019.11.030 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:
- 作者:
George R. Saade;Glenn Markenson;Louise C. Laurent;Kent Heyborne;Dean Coonrod;Corina N. Schoen;Jason Baxter;David M. Haas;Sherri Longo;William A. Grobman;Carol scott sullivan;Sarahn M. Major;leonardo Wheeler;Kim Pereira;Emily Boggess;Angela Su;Amy Hawk;Angela Crockett;Julja Fox; Burchard - 通讯作者:
Burchard
Jason Baxter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Baxter', 18)}}的其他基金
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114312 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Scalable Manufacturing of Perovskite Photovoltaics by Controlled Crystallization During Slot Die Coating
通过狭缝模头涂覆过程中的受控结晶实现钙钛矿光伏的可扩展制造
- 批准号:
1933819 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Directing Charge and Energy Flow in Discrete Nanocrystal-Dendrimer Hybrids and in Their Assemblies
合作研究:在离散纳米晶体-树枝状聚合物杂化物及其组件中引导电荷和能量流
- 批准号:
1708991 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SusCHEM: Environmental Sustainability of Lead Perovskite Solar Cells
合作研究:SusCHEM:铅钙钛矿太阳能电池的环境可持续性
- 批准号:
1704957 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SusChEM: Using Ultrafast Carrier Dynamics to Link Structure, Properties, and Performance in Single-Crystal Cu2ZnSn(S,Se)4 for Thin Film Photovoltaics
合作研究:SusChEM:利用超快载流子动力学将薄膜光伏用单晶 Cu2ZnSn(S,Se)4 的结构、性质和性能联系起来
- 批准号:
1507988 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Ultrafast Carrier Dynamics in Semiconductor Nanocrystal Solar Cells
合作研究:半导体纳米晶体太阳能电池中的超快载流子动力学
- 批准号:
1333649 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Microreactor for High-Yield Solution Deposition of Thin Films and Nanowires
用于薄膜和纳米线高产率溶液沉积的微反应器
- 批准号:
1000111 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MRI: Acquisition of an Ultrafast Laser System for Terahertz Spectroscopy and Sub-Picosecond Dynamics
MRI:获取用于太赫兹光谱和亚皮秒动力学的超快激光系统
- 批准号:
0922929 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Model 2D Ordering: Structure and Dynamics of Nanoparticles and Their Mixtures at Liquid Interfaces
二维有序模型:纳米粒子及其混合物在液体界面的结构和动力学
- 批准号:
2104883 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Cyber Security Analytics: Anthropomorphic vs. Technomorphic Interfaces: Their Role in the Attribution of Blame and the Engendering of Trust after Cybe
网络安全分析:拟人化与技术化界面:它们在 Cybe 之后的归咎和信任产生中的作用
- 批准号:
2598925 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Studentship
CAS: Revealing the Atomic and Electronic Structures of the Photoelectrode/Catalyst/Water Interfaces and Their Effects on Solar Water Splitting
CAS:揭示光电极/催化剂/水界面的原子和电子结构及其对太阳能水分解的影响
- 批准号:
2054986 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Theoretical study on quantum spin liquids and their interfaces
量子自旋液体及其界面的理论研究
- 批准号:
19K03729 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of interfaces for capturing pharmaceuticals, agrochemicals and dyes and their application to sustainable water protection with low environmental impact
捕获药物、农用化学品和染料的界面设计及其在低环境影响的可持续水保护中的应用
- 批准号:
19J20799 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Exotic Phases and Their Interfaces in Correlated Many-Particle Systems
相关多粒子系统中的奇异相及其界面
- 批准号:
1932796 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Interfaces of root clauses to their semantic interpretations: A biolinguistic approach
根子句与其语义解释的接口:生物语言学方法
- 批准号:
18K00544 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Systematic studies of foam prevention and inhibition by identification of interfaces-non-existence domains and their realization by means of adaptive design of column random fillers and packs
通过识别不存在界面域来系统地研究泡沫的预防和抑制,并通过柱随机填料和填料的自适应设计来实现
- 批准号:
408062554 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Research Grants
Electron Microscopy for the Characterisation and Manipulation of Advanced Functional Materials and their Interfaces at the Nanoscale
用于纳米级先进功能材料及其界面表征和操作的电子显微镜
- 批准号:
EP/R023751/1 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Regulation of dynamic aggregation states of polymer/water interfaces and their application to bioinert materilas
聚合物/水界面动态聚集态的调控及其在生物惰性材料中的应用
- 批准号:
18H02037 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)