CAREER: Probing the Sequence and Dynamics of Single DNA Molecules Using Solid-State Nanopores, Optical Tweezers, and Binding Proteins

职业:利用固态纳米孔、光镊和结合蛋白探测单个 DNA 分子的序列和动力学

基本信息

  • 批准号:
    0846505
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)0846505SteinGenetic information holds a key to rapid progress in the life sciences and medicine, yet it remains difficult to obtain because it is encoded in a vast sequence of tiny bases along DNA molecules. At present, only the biochemical machinery of the cell can easily tell the four DNA bases apart. This CAREER project seeks to mimic biology's exquisite sensitivity by extracting genetic information from a single molecule through a combination of three powerful techniques: First, biological binding proteins will be attached to a specific sequence along DNA molecules, and mark its locations by creating a physical bulge there. Second, the DNA molecule will be electrically threaded through a solid-state nanopore - a nanometer-scale hole in a thin membrane - that will also serve as an electrical detector. Third, the DNA molecule will be guided through the nanopore at a controlled, steady speed using an optical tweezers instrument. As the bulky binding proteins pass through the nanopore, they will impede the flow of salt ions through the nanopore, and be detected as a measureable dip in electrical current. This ability to identify specific locations along DNA, combined with the nanometer-scale position control and pico-Newton force sensitivity of optical tweezers, will enable new fundamental studies on single molecules. Nanoscale physics will be probed, including the role of thermal fluctuations, and whether the motion of DNA through a nanopore is continuous, or proceeds in a stick-slip manner. Biological questions, concerning the specificity and strength of DNA-protein interactions, will also be addressed. This project will help lay the groundwork for a potentially transformative nanopore technology, capable of extracting important genetic information from single DNA molecules at high speed.The educational component of this integrated CAREER project will convey the unique physics of life at the molecular scale to students at all levels from elementary school through graduate school. Particular attention will be focused on the Providence Public School system, which is stressed, and which serves a community of students that are largely underrepresented in the sciences. Education modules will be developed for both elementary school science programs and high school after-school programs, and both high school students and science teachers will participate in the technical side of this CAREER project through summer research experiences. At the university level, students will continue to benefit from the infrastructure of this project as they participate in research, and from a new course on the physics of biological and soft condensed matter at the nanoscale. This interdisciplinary research and education program will provide training and enrichment opportunities for students preparing for careers in a rapidly growing area of the high-technology economy. Finally, the technological objectives of this project may have a broad impact on the life sciences by giving researchers improved access to genome-wide genetic information and DNA-protein interactions, from which new discoveries and biomedical applications can derive.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)0846505资助的。基因信息是生命科学和医学快速发展的关键,但由于它被编码在DNA分子上的大量微小碱基序列中,因此仍然很难获得。目前,只有细胞的生化机制可以很容易地区分这四种DNA碱基。这个CAREER项目试图通过结合三种强大的技术从单个分子中提取遗传信息,从而模仿生物学的精致灵敏度:首先,生物结合蛋白将附着在DNA分子的特定序列上,并通过在那里创建一个物理凸起来标记它的位置。其次,DNA分子将被电穿过固态纳米孔——薄膜上的纳米级孔——它也将充当电子探测器。第三,DNA分子将被引导通过纳米孔在一个可控的,稳定的速度使用光学镊子仪器。当大体积的结合蛋白通过纳米孔时,它们会阻碍盐离子通过纳米孔,并被检测为电流的可测量dip。这种识别DNA特定位置的能力,结合纳米级位置控制和光学镊子的皮牛顿力灵敏度,将使单分子的新基础研究成为可能。纳米物理将被探索,包括热波动的作用,以及DNA通过纳米孔的运动是连续的,还是以粘滑的方式进行。生物学问题,关于特异性和强度的dna -蛋白质相互作用,也将解决。这个项目将有助于为潜在的革命性纳米孔技术奠定基础,该技术能够从单个DNA分子中高速提取重要的遗传信息。这个综合职业项目的教育部分将在分子尺度上向从小学到研究生院的各个层次的学生传达独特的生命物理学。特别关注的将是普罗维登斯公立学校(Providence Public School)系统,该系统受到强调,并为在科学领域代表性不足的学生群体提供服务。教育模块将在小学科学课程和高中课外课程中开发,高中学生和科学教师将通过暑期研究经验参与该CAREER项目的技术方面。在大学层面,学生将继续受益于该项目的基础设施,因为他们参与了研究,并从纳米尺度的生物和软凝聚态物质物理学的新课程中受益。这个跨学科的研究和教育项目将为学生提供培训和丰富的机会,为在快速发展的高科技经济领域的职业生涯做准备。最后,该项目的技术目标可能对生命科学产生广泛的影响,使研究人员能够更好地获取全基因组遗传信息和dna -蛋白质相互作用,从中可以获得新的发现和生物医学应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Derek Stein其他文献

Simulated sunlight decreases the viability of SARS-CoV-2
模拟阳光会降低 SARS-CoV-2 的生存能力
  • DOI:
    10.21203/rs.3.rs-37057/v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Angela Sloan;T. Cutts;B. Griffin;S. Kasloff;Zachary Schiffman;M. Chan;J. Audet;Anders Leung;D. Kobasa;Derek Stein;G. Poliquin
  • 通讯作者:
    G. Poliquin
Molecular ping-pong
分子乒乓
  • DOI:
    10.1038/nnano.2007.396
  • 发表时间:
    2007-12-01
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Derek Stein
  • 通讯作者:
    Derek Stein
Nanopore ion sources deliver individual ions of amino acids and peptides directly into high vacuum
纳米孔离子源将单个氨基酸和肽离子直接送入高真空环境。
  • DOI:
    10.1038/s41467-024-51455-x
  • 发表时间:
    2024-09-04
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Nicholas Drachman;Mathilde Lepoitevin;Hannah Szapary;Benjamin Wiener;William Maulbetsch;Derek Stein
  • 通讯作者:
    Derek Stein
Massive radius-dependent flow slippage in carbon nanotubes
碳纳米管中大规模的与半径相关的流动滑移
  • DOI:
    10.1038/nature19315
  • 发表时间:
    2016-09-07
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Eleonora Secchi;Sophie Marbach;Antoine Niguès;Derek Stein;Alessandro Siria;Lydéric Bocquet
  • 通讯作者:
    Lydéric Bocquet

Derek Stein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Derek Stein', 18)}}的其他基金

SBIR Phase I: Multifunctional coatings for building envelopes
SBIR 第一阶段:建筑围护结构多功能涂料
  • 批准号:
    2304482
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Studies of Viscophoresis -- Drift in a Viscosity Gradient
粘度电泳研究——粘度梯度漂移
  • 批准号:
    1904511
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Free Energy Landscaping for Single-Molecule Biophysics
单分子生物物理学的自由能源景观
  • 批准号:
    1409577
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Electro-Fluidics for Single-Molecule Biophysics
单分子生物物理学的电流体学
  • 批准号:
    0805176
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

Probing matter-antimatter asymmetry with the muon electric dipole moment
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    30 万元
  • 项目类别:
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
  • 批准号:
    11805087
  • 批准年份:
    2018
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Probing structural dynamics and regulatory mechanisms of RNA-guided CRISPR-Cas12 endonucleases and their analogues
职业:探索 RNA 引导的 CRISPR-Cas12 核酸内切酶及其类似物的结构动力学和调控机制
  • 批准号:
    2339799
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Probing ultralight bosons with black holes and gravitational waves
用黑洞和引力波探测超轻玻色子
  • 批准号:
    DE240100206
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Early Career Researcher Award
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
  • 批准号:
    EP/X031403/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Probing Electrochemical Interface in CO2 reduction by Operando Computation
通过操作计算探测二氧化碳还原中的电化学界面
  • 批准号:
    DE240100846
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Early Career Researcher Award
Probing Solar Axions with X-ray Optics for BabyIAXO
使用 BabyIAXO 的 X 射线光学器件探测太阳轴子
  • 批准号:
    2309980
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Probing Specificity and Competition in the Lipid Droplet Proteome
职业:探索脂滴蛋白质组的特异性和竞争
  • 批准号:
    2341008
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Probing Molecular Quantum Materials by Advanced Spectroscopies
通过先进光谱探测分子量子材料
  • 批准号:
    2349345
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412550
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了