Free Energy Landscaping for Single-Molecule Biophysics
单分子生物物理学的自由能源景观
基本信息
- 批准号:1409577
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical: This award by the Biomaterials program in the Division of Materials Research to Brown University is cofunded by the Instrument Development for Biological Research program in the Division of Biological Infrastructure (BIO). This award will study "Lab-on-a-chip" technology in improving healthcare by making biomedical tests smaller, cheaper, and faster. The ultimate limit would be tests on single molecules. This project aims to take an important step in that direction by developing powerful ways of controlling the shape and the motion of single DNA molecules. With this award, techniques will be developed that require nanofluidic device "channels with dimensions only tens to hundreds of nanometers across" because they can exploit physical concepts that only apply at that scale. For instance, a fluidic device with nanoscale topographic features inside it, like nanotrenches, harnesses the entropy of a DNA molecule to guide its motion or even contort it into predetermined shapes. Entropy is a measure of the multitude of microscopically different shapes a polymer can adopt. It is also possible to manipulate a DNA molecule electrostatically, using a nanofluidic version of the field effect upon which transistors are based. The experiments in this project will advance our fundamental understanding of nanofluidics and polymer physics. This project will also apply control over single DNA molecules to obtain overlapping restriction maps of a single molecule, which can increase the throughput of long-range sequence information that complements next-generation genomic sequencing data. This interdisciplinary project will prepare graduate and undergraduate students for careers in a rapidly growing area of the high-technology economy. Furthermore, the videos collected of single DNA molecules being controlled one by one will be used in the classroom at Brown University and in the nearby public elementary schools. Technical: This award is to develop new methods in controlling the configurations and the transport of single DNA molecules inside nanofluidic devices. The proposed methods rely on influencing the free energy landscape for a nanoconfined polyelectrolyte. This researcher will investigate how a series of trenches embedded within a nanoslit governs the configurational entropy of a polymer through the reduction of the number of configurations available in shallow regions as compared with deeper regions. The investigator will also explore how the charged inner surfaces of a device influence the enthalpy of a confined molecule through Coulomb forces, which can be locally tuned using electrodes. These new modalities of control should enable fundamental studies on single DNA molecules and new bio-analytical applications. Stochastic resonance and noise-assisted transport of DNA will be studied in a synthetic, bumpy free energy landscape. A similar device will be used to create overlapping restriction maps of the same DNA molecule by performing multiple restriction digests, sequentially, on the molecule as it is trapped and stretched in a long nanotrench. This project will advance "lab-on-a-chip" applications, provide excellent training opportunities for graduate and undergraduate students, and will support outreach activities to local public schools.
非技术性:生物材料计划在材料研究部门颁发的布朗大学的奖项是由生物基础设施(BIO)生物学仪器开发计划(BIO)的奖项。该奖项将通过使生物医学测试更小,更便宜和更快地研究“实验室芯片”技术,以改善医疗保健。最终的极限将是对单分子的测试。该项目旨在通过开发强大的方法来控制单个DNA分子的形状和运动来迈出重要的一步。通过此奖项,将开发需要纳米流体设备的技术“尺寸仅数十万到数百纳米的通道”,因为它们可以利用仅适用于该规模的物理概念。例如,内部具有纳米级地形特征的流体装置,例如纳米肾上腺,利用DNA分子的熵引导其运动,甚至扭曲其为预定的形状。熵是聚合物可以采用的多种显微镜不同形状的量度。也可以使用晶体管所基于的田间效应的纳米流体版本来操纵DNA分子。该项目中的实验将提高我们对纳米流体和聚合物物理学的基本理解。该项目还将对单个DNA分子进行控制,以获得单个分子的重叠限制图,这可以增加与下一代基因组测序数据相辅相成的远程序列信息的吞吐量。这个跨学科项目将为毕业生和本科生做好准备,以在高科技经济的快速发展领域的职业中做好准备。此外,收集的单个DNA分子的视频将一一控制在布朗大学的课堂和附近的公立小学中。技术:该奖项是为控制纳米流体设备内的单个DNA分子的构型和传输而开发新方法。所提出的方法依赖于纳米夹层聚电解质的自由能景观。该研究人员将研究一系列嵌入纳米斜率内的沟槽如何通过减少与更深层区域相比浅区域可用的配置数量来控制聚合物的构型熵。研究者还将探索设备的带电的内表面如何通过库仑力影响狭窄的分子的焓,库仑力可以使用电极局部调节。这些新的控制方式应使对单个DNA分子和新的生物分析应用的基本研究。随机共振和DNA的噪声辅助运输将在合成的,颠簸的自由能景观中进行研究。类似的设备将用于创建相同DNA分子的重叠限制图,通过在分子中依次在分子上进行多种限制消化,因为它被困在长纳米型中。该项目将推进“芯片实验室”的应用程序,为研究生和本科生提供极好的培训机会,并将支持向当地公立学校进行外展活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Derek Stein其他文献
Simulated sunlight decreases the viability of SARS-CoV-2
模拟阳光会降低 SARS-CoV-2 的生存能力
- DOI:
10.21203/rs.3.rs-37057/v1 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Angela Sloan;T. Cutts;B. Griffin;S. Kasloff;Zachary Schiffman;M. Chan;J. Audet;Anders Leung;D. Kobasa;Derek Stein;G. Poliquin - 通讯作者:
G. Poliquin
Derek Stein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Derek Stein', 18)}}的其他基金
SBIR Phase I: Multifunctional coatings for building envelopes
SBIR 第一阶段:建筑围护结构多功能涂料
- 批准号:
2304482 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Studies of Viscophoresis -- Drift in a Viscosity Gradient
粘度电泳研究——粘度梯度漂移
- 批准号:
1904511 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CAREER: Probing the Sequence and Dynamics of Single DNA Molecules Using Solid-State Nanopores, Optical Tweezers, and Binding Proteins
职业:利用固态纳米孔、光镊和结合蛋白探测单个 DNA 分子的序列和动力学
- 批准号:
0846505 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Electro-Fluidics for Single-Molecule Biophysics
单分子生物物理学的电流体学
- 批准号:
0805176 - 财政年份:2008
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
相似国自然基金
miPEP398-miR398诱导亚低温条件下番茄种子活力的机制研究
- 批准号:32372677
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
全基因组关联分析揭示ZmMGT1调控玉米种子活力的功能机理
- 批准号:32372161
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
- 批准号:82371332
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
- 批准号:82371631
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
协同多精度活力测度的高密度城区公园供需评价与调控研究
- 批准号:52308066
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
- 批准号:
2337598 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341994 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant