Electro-Fluidics for Single-Molecule Biophysics

单分子生物物理学的电流体学

基本信息

  • 批准号:
    0805176
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

ID: MPS/DMR/BMAT(7623) 0805176 PI: Stein, Derek ORG: Brown UniversityTitle: Electro-Fluidics for Single Molecule BiophysicsINTELLECTUAL MERIT: This research program will explore the interface between hard and soft matter where charged biomolecules are confined to ultra-small, electrostatically actuated, aqueous environments. Success in this effort will add an important new dimension to ?lab-on-a-chip? devices that have the potential to revolutionize medical diagnostics. Nanofluidic structures will directly apply controllable electrostatic forces to a single, charged biomolecule as follows. A negatively charged DNA molecule that is confined to a nanofluidic channel whose width is comparable to the Debye length will be subjected to forces generated by surface potential gradients. By locally tuning the surface potential using gate electrodes, a potential energy landscape will be created that traps DNA at a local minimum. Individual molecules will thereby be confined and manipulated within purely electrostatic walls. The distinct scientific facets of this objective will be addressed through fundamental studies of: (1) the modulation of the electrostatic forces in ionic solution by gated materials, and (2) the conformational and dynamical response of individual DNA polymers to applied electrostatic forces in well-defined, nanofluidic structures. The resulting insight will guide the development of the envisioned ?electro-fluidic? technology. An electrostatically-actuated gate for the manipulation of a single molecule will be demonstrated. The long-term vision of this work includes the integration of electrostatic gates for testing single-molecule dynamics, and to realize ultra-small bioreactors capable of localizing a single enzymatic reaction, such as DNA transcription. The use of gates to selectively control the contents of a silicon-based, artificial cell should also enable experiments in ?bottom-up? biology, in which the biochemical functionality of the cell can be incrementally enhanced.BROADER IMPACTS: The technology under development in this project not only provides a route to new information about the role of electrostatics in governing the behavior of single polyelectrolyte molecules, it has the potential to provide new control mechanisms for nano-fluidic devices. The project also provides an excellent platform for training of graduate and undergraduate students across the domains of physics, chemistry, biology, and materials science. The PI regularly includes undergraduate students in his research team and is a participant in campus-wide programs that aim to increase the diversity of the scientific workforce. In particular, he is engaged with the Leadership Alliance Program, which seeks to increase participation of underrepresented groups in graduate level programs at leading research institutions, and with the Women in Science and Engineering (WiSE) program, which has served as a channel for attracting female students to join his research group.
ID: MPS/DMR/BMAT(7623) 0805176 PI: Stein, Derek ORG: Brown university标题:单分子生物物理学的电流体学知识优势:该研究计划将探索硬物质和软物质之间的界面,其中带电生物分子被限制在超小,静电驱动的水环境中。这一努力的成功将为“片上实验室”增加一个重要的新维度。有可能彻底改变医疗诊断的设备。纳米流体结构将直接对单个带电生物分子施加可控制的静电力,如下所示。带负电荷的DNA分子被限制在宽度与德拜长度相当的纳米流体通道中,将受到表面电位梯度产生的力的影响。通过使用栅极局部调整表面电位,将创造出一个势能景观,使DNA处于局部最小值。因此,单个分子将被限制和操纵在纯静电壁上。这一目标的独特科学方面将通过以下基础研究来解决:(1)门控材料对离子溶液中静电力的调制,以及(2)在定义良好的纳米流体结构中,单个DNA聚合物对施加静电力的构象和动力学响应。由此产生的洞察力将指导设想的“电流体”的发展。技术。将演示用于操纵单个分子的静电驱动门。这项工作的长期愿景包括集成用于测试单分子动力学的静电门,以及实现能够定位单一酶反应(如DNA转录)的超小型生物反应器。利用栅极有选择地控制硅基人工细胞的含量,也应该使自下而上的实验成为可能。生物学,细胞的生化功能可以逐渐增强。更广泛的影响:该项目中正在开发的技术不仅提供了一条关于静电在控制单个聚电解质分子行为中的作用的新信息的途径,它有可能为纳米流体装置提供新的控制机制。该项目还为物理、化学、生物和材料科学领域的研究生和本科生提供了一个良好的培训平台。PI经常将本科生纳入他的研究团队,并参与旨在增加科学劳动力多样性的校园范围内的项目。特别是,他参与了领导联盟计划,该计划旨在增加代表性不足的群体在领先研究机构的研究生水平课程中的参与,并参与了科学与工程女性(WiSE)计划,该计划已成为吸引女性学生加入他的研究小组的渠道。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Derek Stein其他文献

Simulated sunlight decreases the viability of SARS-CoV-2
模拟阳光会降低 SARS-CoV-2 的生存能力
  • DOI:
    10.21203/rs.3.rs-37057/v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Angela Sloan;T. Cutts;B. Griffin;S. Kasloff;Zachary Schiffman;M. Chan;J. Audet;Anders Leung;D. Kobasa;Derek Stein;G. Poliquin
  • 通讯作者:
    G. Poliquin
Molecular ping-pong
分子乒乓
  • DOI:
    10.1038/nnano.2007.396
  • 发表时间:
    2007-12-01
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Derek Stein
  • 通讯作者:
    Derek Stein
Nanopore ion sources deliver individual ions of amino acids and peptides directly into high vacuum
纳米孔离子源将单个氨基酸和肽离子直接送入高真空环境。
  • DOI:
    10.1038/s41467-024-51455-x
  • 发表时间:
    2024-09-04
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Nicholas Drachman;Mathilde Lepoitevin;Hannah Szapary;Benjamin Wiener;William Maulbetsch;Derek Stein
  • 通讯作者:
    Derek Stein
Massive radius-dependent flow slippage in carbon nanotubes
碳纳米管中大规模的与半径相关的流动滑移
  • DOI:
    10.1038/nature19315
  • 发表时间:
    2016-09-07
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Eleonora Secchi;Sophie Marbach;Antoine Niguès;Derek Stein;Alessandro Siria;Lydéric Bocquet
  • 通讯作者:
    Lydéric Bocquet

Derek Stein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Derek Stein', 18)}}的其他基金

SBIR Phase I: Multifunctional coatings for building envelopes
SBIR 第一阶段:建筑围护结构多功能涂料
  • 批准号:
    2304482
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Studies of Viscophoresis -- Drift in a Viscosity Gradient
粘度电泳研究——粘度梯度漂移
  • 批准号:
    1904511
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Free Energy Landscaping for Single-Molecule Biophysics
单分子生物物理学的自由能源景观
  • 批准号:
    1409577
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Probing the Sequence and Dynamics of Single DNA Molecules Using Solid-State Nanopores, Optical Tweezers, and Binding Proteins
职业:利用固态纳米孔、光镊和结合蛋白探测单个 DNA 分子的序列和动力学
  • 批准号:
    0846505
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Elucidating Hydrodynamics at Confined Interfaces for Artificial Active Fluidics and Beyond
阐明人工主动流体学及其他领域的受限界面处的流体动力学
  • 批准号:
    MR/X03660X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
University of Glasgow and Sphere Fluidics Limited KTP22_23 R5
格拉斯哥大学和 Sphere Fluidics Limited KTP22_23 R5
  • 批准号:
    10062073
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Knowledge Transfer Partnership
Fluidics for Energy
能源流体学
  • 批准号:
    RGPIN-2020-06117
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
3D conducting polymer devices for hosting and monitoring human gut models with integrated fluidics
3D 导电聚合物设备,用于通过集成流体技术托管和监测人体肠道模型
  • 批准号:
    EP/X02833X/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Fluidics for Energy
能源流体学
  • 批准号:
    RGPIN-2020-06117
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Mechanics and Computer Simulations with Applications in Micro- and Nano-Fluidics and Biological Physics
统计力学和计算机模拟在微纳米流体和生物物理学中的应用
  • 批准号:
    46434-2013
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Heriot-Watt University and Sphere Fluidics Limited
赫瑞瓦特大学和 Sphere Fluidics Limited
  • 批准号:
    511817
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Knowledge Transfer Partnership
Micro & Nano fluidics for the thermodynamic state of complex mixtures
  • 批准号:
    518524-2018
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Fluidics for Energy
能源流体学
  • 批准号:
    RGPIN-2020-06117
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Mechanics and Computer Simulations with Applications in Micro- and Nano-Fluidics and Biological Physics
统计力学和计算机模拟在微纳米流体和生物物理学中的应用
  • 批准号:
    46434-2013
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了