CAREER: Unified Optimal Control and Estimation of Nonlinear Dynamic Systems with Closed-Form Solutions

职业:具有闭式解的非线性动态系统的统一最优控制和估计

基本信息

  • 批准号:
    0846877
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)"Proposal Number: ECCS-0846877Proposal Title: Unified Optimal Control and Estimation of Nonlinear Dynamic Systems with Closed-Form SolutionsPI Name: Xin, MingPI Institution: Mississippi State UniversityThe objective of this research is to create a unified theoretic framework for optimal control and estimation of nonlinear dynamic systems. The approach is to (1) establish a rigorous theory and efficient algorithms for solving nonlinear optimal control problems with closed-form solutions for a variety of terminal conditions; (2) develop a dual nonlinear estimation technique using a unified methodology derived from the control algorithm; (3) systematically integrate the control and estimation algorithms and validate them through simulation studies and experiments. Intellectual Merit: The novel theory will provide new perspectives and tools to solve the traditionally difficult nonlinear optimal control and estimation problems. The unified approach will give simpler closed-form solutions and overcome the computational barriers. More importantly, the new results will expand the optimal control application horizon significantly since most real systems have nonlinear dynamics.Broader Impacts: The success of this research represents a breakthrough in optimization of a wide variety of complex dynamic systems, which will have a profound impact on many aspects of the economy and society. The novel research results will provide the state-of-the-art content for new courses, research topics, as well as hands-on learning opportunities for undergraduate and graduate students. The educational impact can be maximized by involving students in integrating the new techniques into the flight control research of unmanned air vehicles and micro-satellite project at the Mississippi State University. The dissemination of this new technique through the university?s unique outreach program will have a great impact on attracting local high school and minority students' enthusiasm in engineering.
“该奖项由2009年美国复苏和再投资法案(公法111-5)资助”提案编号:ECCS-0846877提案标题:采用闭式解的非线性动态系统的统一最优控制和估计PI名称:Xin,MingPI机构:密西西比州立大学这项研究的目标是为非线性动态的最优控制和估计创建一个统一的理论框架 系统。其方法是:(1)建立严格的理论和高效的算法来解决非线性最优控制问题,并针对各种终端条件提供闭式解; (2) 使用从控制算法导出的统一方法开发双非线性估计技术; (3)系统地集成控制和估计算法,并通过仿真研究和实验进行验证。智力价值:新颖的理论将为解决传统上困难的非线性最优控制和估计问题提供新的视角和工具。统一的方法将提供更简单的封闭式解决方案并克服计算障碍。更重要的是,由于大多数实际系统都具有非线性动力学,这些新成果将显着拓展最优控制的应用范围。 更广泛的影响:这项研究的成功代表了各种复杂动态系统优化的突破,将对经济和社会的许多方面产生深远的影响。新颖的研究成果将为新课程、研究主题以及本科生和研究生的实践学习机会提供最先进的内容。通过让学生将新技术融入密西西比州立大学的无人机和微型卫星项目的飞行控制研究中,可以最大限度地发挥教育影响。通过大学独特的推广计划传播这项新技术将对吸引当地高中和少数民族学生对工程的热情产生巨大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Lacy其他文献

Thomas Lacy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Study on an Efficient Unified Method for Obtaining Optimal Design of the Multi-Dimensional, Multi-State and Multi-Objective Network System Considering Similar Shape of Graphs
考虑图相似形状的多维、多状态、多目标网络系统优化设计的高效统一方法研究
  • 批准号:
    22K04603
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Unified Approach to Optimal Uncertainty Quantification and Risk-Averse Optimization withQuasi-Variational Inequality Constraints
具有拟变分不等式约束的最优不确定性量化和风险规避优化的统一方法
  • 批准号:
    423760521
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Priority Programmes
Consistent method for optimal design and manufacturing based on the unified geometrical feature evaluation by the partial differential equation
基于偏微分方程统一几何特征评价的一致性优化设计与制造方法
  • 批准号:
    19H02049
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: A Unified Framework for Optimal Public Debt Management
合作研究:最优公共债务管理的统一框架
  • 批准号:
    1918748
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: A Unified Framework for Optimal Public Debt Management
合作研究:最优公共债务管理的统一框架
  • 批准号:
    1918713
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Development of output feedback nonlinear stochastic MPC by a unified solution method of stochastic optimal control and nonlinear inference
通过随机最优控制和非线性推理的统一求解方法开发输出反馈非线性随机MPC
  • 批准号:
    18K04202
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unified Theory for Synthesis of Optimal Structures of Next-Generation Digital Filters Based on Stochastic Computation
基于随机计算的下一代数字滤波器最优结构综合统一理论
  • 批准号:
    15K06049
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a unified framework for optimal control and estimation of nonlinear stochastic systems based on path integral analysis
基于路径积分分析的非线性随机系统最优控制和估计统一框架的开发
  • 批准号:
    15K18089
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Unified flood model with optimal zooming and linking at multiple scales
统一洪水模型,在多个尺度上具有最佳缩放和链接
  • 批准号:
    EP/K031023/1
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Study for the unified algorithms for obtaining Pareto solution for the optimal design problems of a multi-objective network
多目标网络优化设计问题Pareto解统一算法研究
  • 批准号:
    25350456
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了