Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
基本信息
- 批准号:0848378
- 负责人:
- 金额:$ 1.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
L-infinity variational problems are problems where one seeks to find the maximum (or minimum) of a functional that is an expression involving the pointwise behavior of a function and its gradient. The study of such problems has become very active recently and this project will support the study of a number of important open questions in the area. A particular interest is the relationship between minimizers of the variational problems and solutions of the corresponding Aronsson equation. Other questions include the uniqueness and regularity of solutions of the Aronsson equations and the characterization of the principal eigenvalue of the infinity-Laplacian operator. These variational problems are not only interesting mathematically but arise in a number of different areas of applications. These include the determination of optimal radiation treatments in chemotherapy, in image analysis and reconstruction and in determining winning strategies in certain types of games. The results obtained under this research will help describe the mathematical models of these applications. This is a collaborative award with Dr Changyou Wang of the University of Kentucky.
L-无限变分问题是一个寻求泛函的最大值(或最小值)的问题,泛函是一个涉及函数及其梯度的逐点行为的表达式。对这类问题的研究最近变得非常活跃,该项目将支持对该领域一些重要的未决问题的研究。一个特别有趣的问题是变分问题的极小值与相应的Aronsson方程的解之间的关系。其他问题包括Aronsson方程解的唯一性和正则性以及无穷拉普拉斯算子的主本征值的刻画。这些变分问题不仅在数学上很有趣,而且出现在许多不同的应用领域。这些包括在化疗、图像分析和重建中确定最佳放射治疗,以及在某些类型的游戏中确定制胜策略。根据这项研究获得的结果将有助于描述这些应用的数学模型。这是与肯塔基大学的王昌友博士合作的奖项。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yifeng Yu其他文献
VISinger2+: End-to-End Singing Voice Synthesis Augmented by Self-Supervised Learning Representation
VISinger2:通过自监督学习表示增强端到端歌声合成
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yifeng Yu;Jiatong Shi;Yuning Wu;Shinji Watanabe - 通讯作者:
Shinji Watanabe
Asymptotic solution and effective Hamiltonian of a Hamilton–Jacobi equation in the modeling of traffic flow on a homogeneous signalized road
同质信号道路交通流建模中 Hamilton-Jacobi 方程的渐近解和有效哈密顿量
- DOI:
10.1016/j.matpur.2015.07.002 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
W. Jin;Yifeng Yu - 通讯作者:
Yifeng Yu
An injectable and adaptable system for the sustained release of hydrogen sulfide for targeted diabetic wound therapy by improving the microenvironment of inflammation regulation and angiogenesis
一种用于通过改善炎症调节和血管生成的微环境来针对糖尿病伤口治疗持续释放硫化氢的可注射且适应性强的系统
- DOI:
10.1016/j.actbio.2025.02.048 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:9.600
- 作者:
Hao Zhang;Xianzhen Dong;Yuhang Liu;Ping Duan;Changjiang Liu;Kun Liu;Yifeng Yu;Xinyue Liang;Honglian Dai;Aixi Yu - 通讯作者:
Aixi Yu
Exploring the dark side of probiotics to pursue light: Intrinsic and extrinsic risks to be opportunistic pathogens
探索益生菌的阴暗面以追求光明:成为机会性病原体的内在和外在风险
- DOI:
10.1016/j.crfs.2025.101044 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:7.000
- 作者:
Ruiyan Xu;Yifeng Yu;Tingtao Chen - 通讯作者:
Tingtao Chen
Stochastic homogenization of nonconvex Hamilton-Jacobi equations in one space dimension
一维非凸 Hamilton-Jacobi 方程的随机均匀化
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
S. Armstrong;H. Tran;Yifeng Yu - 通讯作者:
Yifeng Yu
Yifeng Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yifeng Yu', 18)}}的其他基金
Analysis of Properties of Effective Hamiltonians with Applications
有效哈密顿量的性质分析及其应用
- 批准号:
2000191 - 财政年份:2020
- 资助金额:
$ 1.72万 - 项目类别:
Standard Grant
CAREER: Analysis of G-equations in the modeling of turbulent flame speed and comparison with other math models
职业:湍流火焰速度建模中的 G 方程分析以及与其他数学模型的比较
- 批准号:
1151919 - 财政年份:2012
- 资助金额:
$ 1.72万 - 项目类别:
Standard Grant
Problems related to the infinity Laplacian operator, the weak KAM theory and singularities of solutions of Monge-Ampere equations
无穷大拉普拉斯算子、弱KAM理论和Monge-Ampere方程解的奇点相关问题
- 批准号:
0901460 - 财政年份:2009
- 资助金额:
$ 1.72万 - 项目类别:
Continuing Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
- 批准号:
0601403 - 财政年份:2006
- 资助金额:
$ 1.72万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PEEC Phase II: 2+2+2+Infinity: Pipeline for Tribal Preengineering to Society
合作研究:PEEC 第二阶段:2 2 2 Infinity:部落预工程到社会的管道
- 批准号:
1642048 - 财政年份:2016
- 资助金额:
$ 1.72万 - 项目类别:
Standard Grant
Collaborative Research: PEEC Phase II: 2+2+2+Infinity: Pipeline for Tribal Preengineering to Society
合作研究:PEEC 第二阶段:2 2 2 Infinity:部落预工程到社会的管道
- 批准号:
1642047 - 财政年份:2016
- 资助金额:
$ 1.72万 - 项目类别:
Standard Grant
Collaborative Research: PEEC Phase II: 2+2+2+Infinity: Pipeline for Tribal Preengineering to Society
合作研究:PEEC 第二阶段:2 2 2 Infinity:部落预工程到社会的管道
- 批准号:
1642064 - 财政年份:2016
- 资助金额:
$ 1.72万 - 项目类别:
Standard Grant
Collaborative Research: PEEC Phase II: 2+2+2+Infinity: Pipeline for Tribal Preengineering to Society
合作研究:PEEC 第二阶段:2 2 2 Infinity:部落预工程到社会的管道
- 批准号:
1642167 - 财政年份:2016
- 资助金额:
$ 1.72万 - 项目类别:
Standard Grant
Collaborative Research: PEEC Phase II: 2+2+2+Infinity: Pipeline for Tribal Preengineering to Society
合作研究:PEEC 第二阶段:2 2 2 Infinity:部落预工程到社会的管道
- 批准号:
1642021 - 财政年份:2016
- 资助金额:
$ 1.72万 - 项目类别:
Standard Grant
Collaborative Research (PEEC: 2+2+2+Infinity:Pipeline for Tribal Pre-Engineering to Society
合作研究(PEEC:2 2 2 Infinity:部落预工程到社会的管道
- 批准号:
1038186 - 财政年份:2010
- 资助金额:
$ 1.72万 - 项目类别:
Continuing Grant
Collaborative Research: PEEC: 2+2+2+Infinity: Pipeline for Tribal Pre-Engineering to Society (PTiPS)
合作研究:PEEC:2 2 2 Infinity:部落预工程到社会的管道 (PTiPS)
- 批准号:
1038080 - 财政年份:2010
- 资助金额:
$ 1.72万 - 项目类别:
Continuing Grant
Collaborative Research PEEC: 2+2+2+Infinity: Pipeline for Tribal Pre-Engineering to Society
合作研究 PEEC:2 2 2 Infinity:部落预工程到社会的管道
- 批准号:
1038067 - 财政年份:2010
- 资助金额:
$ 1.72万 - 项目类别:
Continuing Grant
Collaborative Research: PEEC: 2+2+2+Infinity: Pipeline for Tribal Pre-Engineering to Society (PTiPS)
合作研究:PEEC:2 2 2 Infinity:部落预工程到社会的管道 (PTiPS)
- 批准号:
1038079 - 财政年份:2010
- 资助金额:
$ 1.72万 - 项目类别:
Continuing Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
- 批准号:
0601403 - 财政年份:2006
- 资助金额:
$ 1.72万 - 项目类别:
Standard Grant