Analysis of Properties of Effective Hamiltonians with Applications
有效哈密顿量的性质分析及其应用
基本信息
- 批准号:2000191
- 负责人:
- 金额:$ 30.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many physical systems (e.g. composite materials and turbulent combustion) in practical applications involve small structures. It is important to “average” those small scales through suitable mathematical models (called “homogenization”) and investigate resulting macroscopic structures (“effective quantities”) that are approximations of original systems. A particularly interesting and physically relevant question is to understand how those effective quantities depend on original physical systems. Effective Hamiltonian arises from homogenizing Hamilton-Jacobi equations, which are partial differential equations (PDE) that play fundamental roles in control theory and the modeling of things like crystal growth, flame propagations, etc. For example, effective Hamiltonian serves as an important approach to model turbulent flame speed, one of the most important quantities in turbulent combustion (e.g., the spread of wild fire fanned by strong wind, the burning inside an engine), via the popular G-equation model. One goal of this project is to understand how the turbulent flame speed depends on the strength of the flow (e.g., wind velocity) and other important physical quantities like curvature effects, which could provide theoretical justifications for phenomena observed in experiments. The curvature effect is a phenomenological way to capture variance of burning temperature along the flame front. The project provides research training opportunities for graduate students.The first part of the project aims to identify optimal convergence rate in periodic homogenization of Hamilton-Jacobi equations. As the principal investigator and his collaborators have revealed in previous works, the optimal convergence rate is closely related to the shape of corresponding effective Hamiltonian. The second and third part of the project focus on studying important properties of effective Hamiltonian from perspectives of both the mathematical interest and practical applications in turbulent combustion. Although the existence of effect Hamiltonian has been established in many situations since the fundamental work of Lions-Papanicolaou-Varadhan (1987), understanding finer properties of effective Hamiltonian remains a major open problem in homogenization theory due to limitations of standard methods in PDEs. There are deep connections between properties of effective Hamiltonian and dynamical systems. In particular, the principal investigator needs to employ substantial tools/methods from ergodic theory, Aubry-Mather theory/weak KAM theory. In addition, dynamics associated with two-person zero-sum differential games is also important in dealing with non-convex Hamiltonian and the presence of curvature term (curvature effect).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
实际应用中的许多物理系统(如复合材料和湍流燃烧)都涉及到小结构。重要的是要通过适当的数学模型(称为“均化”)来“平均”这些小尺度,并研究由此产生的宏观结构(“有效数量”),这些结构是原始系统的近似。一个特别有趣且与物理相关的问题是理解这些有效数量如何依赖于原始物理系统。有效哈密顿量源于齐次化的哈密顿-雅可比方程,它是偏微分方程组(PDE),在控制理论和对晶体生长、火焰传播等事物的建模中起着重要作用。例如,有效哈密顿量是通过流行的G方程模型来模拟湍流火焰速度的重要方法,湍流火焰速度是湍流燃烧中最重要的量之一(例如,强风引起的野火传播,发动机内部的燃烧)。这个项目的一个目标是了解湍流火焰速度如何取决于流动的强度(例如风速)和其他重要的物理量,如曲率效应,这可以为在实验中观察到的现象提供理论依据。曲率效应是捕捉火焰锋面燃烧温度变化的一种现象学方法。该项目为研究生提供了研究培训机会。该项目的第一部分旨在确定哈密顿-雅可比方程周期齐次化的最优收敛速度。正如主要研究人员和他的合作者在以前的工作中所揭示的那样,最优收敛速度与相应的有效哈密顿量的形状密切相关。本项目的第二部分和第三部分从湍流燃烧的数学兴趣和实际应用的角度研究了有效哈密顿量的重要性质。尽管自从Lions-Papanicolaou-Varadhan(1987)的基础工作以来,效应哈密顿量的存在在许多情况下都得到了证实,但由于偏微分方程组标准方法的局限性,理解有效哈密顿量的更精细性质仍然是齐化理论中的一个主要开放问题。有效哈密顿量的性质与动力系统之间有着深刻的联系。特别是,首席研究者需要使用遍历理论、Aubry-Mather理论/弱KAM理论中的大量工具/方法。此外,与二人零和微分对策相关的动力学在处理非凸哈密顿量和曲率项(曲率效应)的存在方面也很重要。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High degeneracy of effective Hamiltonian in two dimensions
二维有效哈密顿量的高度简并性
- DOI:10.4171/aihpc/6
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yu, Yifeng
- 通讯作者:Yu, Yifeng
Remarks on optimal rates of convergence in periodic homogenization of linear elliptic equations in non-divergence form
- DOI:10.1007/s42985-020-00017-z
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Xiaoqin Guo;H. Tran;Yifeng Yu
- 通讯作者:Xiaoqin Guo;H. Tran;Yifeng Yu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yifeng Yu其他文献
VISinger2+: End-to-End Singing Voice Synthesis Augmented by Self-Supervised Learning Representation
VISinger2:通过自监督学习表示增强端到端歌声合成
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yifeng Yu;Jiatong Shi;Yuning Wu;Shinji Watanabe - 通讯作者:
Shinji Watanabe
Asymptotic solution and effective Hamiltonian of a Hamilton–Jacobi equation in the modeling of traffic flow on a homogeneous signalized road
同质信号道路交通流建模中 Hamilton-Jacobi 方程的渐近解和有效哈密顿量
- DOI:
10.1016/j.matpur.2015.07.002 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
W. Jin;Yifeng Yu - 通讯作者:
Yifeng Yu
An injectable and adaptable system for the sustained release of hydrogen sulfide for targeted diabetic wound therapy by improving the microenvironment of inflammation regulation and angiogenesis
一种用于通过改善炎症调节和血管生成的微环境来针对糖尿病伤口治疗持续释放硫化氢的可注射且适应性强的系统
- DOI:
10.1016/j.actbio.2025.02.048 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:9.600
- 作者:
Hao Zhang;Xianzhen Dong;Yuhang Liu;Ping Duan;Changjiang Liu;Kun Liu;Yifeng Yu;Xinyue Liang;Honglian Dai;Aixi Yu - 通讯作者:
Aixi Yu
Exploring the dark side of probiotics to pursue light: Intrinsic and extrinsic risks to be opportunistic pathogens
探索益生菌的阴暗面以追求光明:成为机会性病原体的内在和外在风险
- DOI:
10.1016/j.crfs.2025.101044 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:7.000
- 作者:
Ruiyan Xu;Yifeng Yu;Tingtao Chen - 通讯作者:
Tingtao Chen
Population-based design and 3D finite element analysis of transforaminal thoracic interbody fusion cages
经椎间孔胸椎椎间融合器的群体设计和 3D 有限元分析
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:6.6
- 作者:
Yifeng Yu;Wenjing Li;Lingjia Yu;Hao Qu;Tong Niu;Yu Zhao - 通讯作者:
Yu Zhao
Yifeng Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yifeng Yu', 18)}}的其他基金
CAREER: Analysis of G-equations in the modeling of turbulent flame speed and comparison with other math models
职业:湍流火焰速度建模中的 G 方程分析以及与其他数学模型的比较
- 批准号:
1151919 - 财政年份:2012
- 资助金额:
$ 30.27万 - 项目类别:
Standard Grant
Problems related to the infinity Laplacian operator, the weak KAM theory and singularities of solutions of Monge-Ampere equations
无穷大拉普拉斯算子、弱KAM理论和Monge-Ampere方程解的奇点相关问题
- 批准号:
0901460 - 财政年份:2009
- 资助金额:
$ 30.27万 - 项目类别:
Continuing Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
- 批准号:
0848378 - 财政年份:2008
- 资助金额:
$ 30.27万 - 项目类别:
Standard Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
- 批准号:
0601403 - 财政年份:2006
- 资助金额:
$ 30.27万 - 项目类别:
Standard Grant
相似海外基金
Understanding the Properties and Interaction Mechanisms of SAGD Slop Oil towards the Development of An Effective Treatment Technology
了解 SAGD 废油的性质和相互作用机制,以开发有效的处理技术
- 批准号:
537488-2019 - 财政年份:2022
- 资助金额:
$ 30.27万 - 项目类别:
Collaborative Research and Development Grants
Research Initiation Award: Theoretical and Computational Methods for Robust Retrieval of Effective Electromagnetic Properties of Random Composite Materials
研究启动奖:鲁棒检索随机复合材料有效电磁特性的理论和计算方法
- 批准号:
2101012 - 财政年份:2021
- 资助金额:
$ 30.27万 - 项目类别:
Standard Grant
Understanding the Properties and Interaction Mechanisms of SAGD Slop Oil towards the Development of An Effective Treatment Technology
了解 SAGD 废油的性质和相互作用机制,以开发有效的处理技术
- 批准号:
537488-2019 - 财政年份:2021
- 资助金额:
$ 30.27万 - 项目类别:
Collaborative Research and Development Grants
Understanding the Properties and Interaction Mechanisms of SAGD Slop Oil towards the Development of An Effective Treatment Technology
了解 SAGD 废油的性质和相互作用机制,以开发有效的处理技术
- 批准号:
537488-2019 - 财政年份:2020
- 资助金额:
$ 30.27万 - 项目类别:
Collaborative Research and Development Grants
Understanding the Properties and Interaction Mechanisms of SAGD Slop Oil towards the Development of An Effective Treatment Technology
了解 SAGD 废油的性质和相互作用机制,以开发有效的处理技术
- 批准号:
537488-2019 - 财政年份:2019
- 资助金额:
$ 30.27万 - 项目类别:
Collaborative Research and Development Grants
NanoThermal Analyzer (NanoTA) Module for Atomic Force Microscopy (AFM) for Effective Characterization and Assessment of the Properties and Long-Term Performance of Novel FRP Materials
用于原子力显微镜 (AFM) 的纳米热分析仪 (NanoTA) 模块,可有效表征和评估新型 FRP 材料的特性和长期性能
- 批准号:
RTI-2020-00476 - 财政年份:2019
- 资助金额:
$ 30.27万 - 项目类别:
Research Tools and Instruments
Development of a databased model for the prediction of effective mechanical and thermal properties of injection-moulded semi-crystalline thermoplastics by means of an artificial neural network (KNN) taking into account the microstructure
开发数据库模型,通过考虑微观结构的人工神经网络 (KNN) 来预测注塑半结晶热塑性塑料的有效机械和热性能
- 批准号:
426052003 - 财政年份:2019
- 资助金额:
$ 30.27万 - 项目类别:
Research Grants
Development of a robust statistical framework for the effective prediction of composite material properties under uncertainty and variability for process control and supply chain management
开发强大的统计框架,用于在过程控制和供应链管理的不确定性和可变性下有效预测复合材料性能
- 批准号:
486885-2016 - 财政年份:2019
- 资助金额:
$ 30.27万 - 项目类别:
Postgraduate Scholarships - Doctoral
Development of a robust statistical framework for the effective prediction of composite material properties under uncertainty and variability for process control and supply chain management
开发强大的统计框架,用于在过程控制和供应链管理的不确定性和可变性下有效预测复合材料性能
- 批准号:
486885-2016 - 财政年份:2018
- 资助金额:
$ 30.27万 - 项目类别:
Postgraduate Scholarships - Doctoral
Evaluation of the effective dose and functional properties of pulse ingredients for functional food product development
评估功能性食品开发中豆类成分的有效剂量和功能特性
- 批准号:
510171-2017 - 财政年份:2017
- 资助金额:
$ 30.27万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's














{{item.name}}会员




