CAREER: Analysis of G-equations in the modeling of turbulent flame speed and comparison with other math models
职业:湍流火焰速度建模中的 G 方程分析以及与其他数学模型的比较
基本信息
- 批准号:1151919
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to study analytically some key problems regarding the G-equation (a noncoercive Hamilton-Jacobi equation), the strain G-equation (a noncoercive and nonconvex Hamilton-Jacobi equation), and the curvature G-equation (a mean-curvature- type equation) in the modeling of turbulent flame speed. Roughly speaking, turbulent flame speed is the averaged flame propagation speed under the effect of the flow (turbulence). The central goal of the project is to understand the dependence of the turbulent flame speed on the turbulence intensity. A particularly important problem is to figure out how the flow-stretching effect contributes to the strong bending and quenching of flame speeds. Another goal of the project is to compare turbulent flame speeds predicted by various G-equations and other models in the mathematics literature, such as the Majda-Souganidis model and the well-studied scalar reaction-diffusion-advection equation model. Some proposed problems have significant connections with the Aubry-Mather theory and weak KAM theory, which are important for understanding nonintegrable dynamical systems. So far there are very few rigorous analytical results on turbulent flame speeds in flows of more than two dimensions. A long-term goal of this project is to understand how chaotic structures in three-dimensional flows (e.g., the Arnold-Beltrami-Childress flow) affect turbulent flame speeds. Turbulent combustion plays the main role in important industrial issues such as energy production and engine design. The so-called G-equation and its variants are popular models in turbulent combustion due to their simplicity, efficiency, and robustness in fitting experiments. All the research components of the project are closely related to one of the most important unsolved problems in turbulent combustion; namely, to predict the turbulent flame speed and, in particular, to understand how it depends on the turbulence intensity (e.g., think of the relation between the spreading velocity of a wild fire and the strength of the wind). A very important part of the project is its educational component. Besides supervision of graduate students, the principal investigator also plans to participate in several well-established educational programs at UC-Irvine, ranging from the K-12 to the undergraduate levels: California MathCounts, a 6-8th grade math competition; the Irvine Area Math Modelers (IAMM), which is a training program that prepares local high school students for the National High School Mathematical Contest in Modeling (HiMCM)); the SURF program, which is an undergraduate summer research program; the Freshman Seminar Program, which provides introductory lectures on research to undergraduate students at UC-Irvine. The project will generate broad impact on combustion science and engineering, with implications for clean energy, as well as further the education of the next generation of STEM scientists.
本项目旨在解析地研究湍流火焰速度模型中关于G-方程(非强制性Hamilton-Jacobi方程)、应变G-方程(非强制性非凸Hamilton-Jacobi方程)和曲率G-方程(平均曲率型方程)的一些关键问题。 大致来说,湍流火焰速度是在流动(湍流)作用下的平均火焰传播速度。 该项目的中心目标是了解湍流火焰速度对湍流强度的依赖性。 一个特别重要的问题是弄清楚流动拉伸效应如何有助于火焰速度的强烈弯曲和熄灭。该项目的另一个目标是比较各种G-方程和数学文献中的其他模型预测的湍流火焰速度,例如Majda-Souganeville模型和研究充分的标量反应-扩散-平流方程模型。其中一些问题与Aubry-Mather理论和弱KAM理论有着重要的联系,这对于理解不可积动力系统是非常重要的。 到目前为止,很少有严格的分析结果湍流火焰速度在流动的二维以上。这个项目的一个长期目标是了解三维流动中的混沌结构(例如,Arnold-Beltrami-奇尔德里斯流)影响湍流火焰速度。湍流燃烧在能源生产和发动机设计等重要工业问题中起着主要作用。所谓的G方程及其变体是湍流燃烧中流行的模型,由于其简单,高效和拟合实验的鲁棒性。该项目的所有研究内容都与湍流燃烧中最重要的未解决问题之一密切相关;即,预测湍流火焰速度,特别是了解它如何取决于湍流强度(例如,想想野火蔓延速度与风力之间的关系)。该项目的一个非常重要的部分是其教育部分。除了监督研究生,首席研究员还计划参加加州大学欧文分校的几个完善的教育项目,从K-12到本科水平:加州MathCounts,一个6- 8年级的数学竞赛; Irvine Area Math Modelers(IAMM)这是一个培训项目,为当地高中生参加全国高中数学建模竞赛(HiMCM)做准备; SURF计划,这是一个本科生暑期研究计划;新生研讨会计划,提供研究介绍讲座,在加州大学欧文分校的本科生。该项目将对燃烧科学和工程产生广泛影响,对清洁能源产生影响,并进一步教育下一代STEM科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yifeng Yu其他文献
VISinger2+: End-to-End Singing Voice Synthesis Augmented by Self-Supervised Learning Representation
VISinger2:通过自监督学习表示增强端到端歌声合成
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yifeng Yu;Jiatong Shi;Yuning Wu;Shinji Watanabe - 通讯作者:
Shinji Watanabe
Asymptotic solution and effective Hamiltonian of a Hamilton–Jacobi equation in the modeling of traffic flow on a homogeneous signalized road
同质信号道路交通流建模中 Hamilton-Jacobi 方程的渐近解和有效哈密顿量
- DOI:
10.1016/j.matpur.2015.07.002 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
W. Jin;Yifeng Yu - 通讯作者:
Yifeng Yu
An injectable and adaptable system for the sustained release of hydrogen sulfide for targeted diabetic wound therapy by improving the microenvironment of inflammation regulation and angiogenesis
一种用于通过改善炎症调节和血管生成的微环境来针对糖尿病伤口治疗持续释放硫化氢的可注射且适应性强的系统
- DOI:
10.1016/j.actbio.2025.02.048 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:9.600
- 作者:
Hao Zhang;Xianzhen Dong;Yuhang Liu;Ping Duan;Changjiang Liu;Kun Liu;Yifeng Yu;Xinyue Liang;Honglian Dai;Aixi Yu - 通讯作者:
Aixi Yu
Exploring the dark side of probiotics to pursue light: Intrinsic and extrinsic risks to be opportunistic pathogens
探索益生菌的阴暗面以追求光明:成为机会性病原体的内在和外在风险
- DOI:
10.1016/j.crfs.2025.101044 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:7.000
- 作者:
Ruiyan Xu;Yifeng Yu;Tingtao Chen - 通讯作者:
Tingtao Chen
Stochastic homogenization of nonconvex Hamilton-Jacobi equations in one space dimension
一维非凸 Hamilton-Jacobi 方程的随机均匀化
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
S. Armstrong;H. Tran;Yifeng Yu - 通讯作者:
Yifeng Yu
Yifeng Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yifeng Yu', 18)}}的其他基金
Analysis of Properties of Effective Hamiltonians with Applications
有效哈密顿量的性质分析及其应用
- 批准号:
2000191 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Problems related to the infinity Laplacian operator, the weak KAM theory and singularities of solutions of Monge-Ampere equations
无穷大拉普拉斯算子、弱KAM理论和Monge-Ampere方程解的奇点相关问题
- 批准号:
0901460 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
- 批准号:
0848378 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
- 批准号:
0601403 - 财政年份:2006
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
- 批准号:
DP220100937 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
- 批准号:
23K13013 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis on delta function type singularities in nonlinear heat equations
非线性热方程中δ函数型奇点分析
- 批准号:
23K03161 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of discrete dynamical systems described by max-plus equations and their applications
最大加方程描述的离散动力系统分析及其应用
- 批准号:
23K03238 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for JSPS Fellows
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of blow-up phenomena for nonlinear parabolic equations
非线性抛物方程的爆炸现象分析
- 批准号:
23K13005 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists