Software and Server for Taxonomic Binning of Metagenomic Sequences

用于宏基因组序列分类分箱的软件和服务器

基本信息

  • 批准号:
    0850256
  • 负责人:
  • 金额:
    $ 80.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-04-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

The J. Craig Venter Institute is awarded a grant to develop MGTAXA, a freely available software and a Web server for taxonomic classification of metagenomic sequences with machine learning techniques. This project will build three major components: 1) a toolbox for reliable assignment of species composition to large collections of unassembled environmental sequencing data, with automated and regular updates of databases and models; 2) a public Web server with a high-performance computational back-end that will let a wide community of biologists build classification models specific to their metagenomic samples; 3) an online instructional environment where students and educators will interactively combine several machine learning algorithms into graphically represented pipelines, apply them to sequences from annotated genomes and contribute to the re-usable repository of exercises and small research projects.The tools developed by this project will help both individual biologists and experienced bioinformatics teams analyze their metagenomic data for the discovery of novel genes, proteins, and metabolic pathways in microorganisms that cannot be grown in the laboratory conditions. This basic scientific research of our living environment will ultimately benefit the public by providing a necessary foundation for applied areas of study such as alternative energy sources and new medicines. The first question that needs to be answered by any metagenomic study is what species or higher taxonomic units are present in the sample, and to bin individual sequences to these units. The novel methodology of this project will require neither an existing homology to known sequences nor a preliminary assembly of individual fragments into longer segments. It also frees its users from a complexity of data management and installation that is beyond the abilities of smaller research groups.The free interactive online learning interface will provide both a hands-on experience and a curriculum development tool for students and teachers from colleges and high-schools, regardless of their geographical location. Source code of the tools developed by this project will be available at the open source development site SourceForge (http://sourceforge.net/projects/mgtaxa/). Web services will be available through a variety of venues: the JCVI web site (http://www.jcvi.org/) and the TeraGrid (http://www.teragrid.org). Certain tools will be submitted for inclusion into existing bioinformatics services Galaxy (http://galaxy.psu.edu) and CAMERA (http://camera.calit2.net).
J.克雷格文特尔研究所获得了一笔赠款,用于开发MGTAXA,这是一种免费提供的软件和网络服务器,用于利用机器学习技术对宏基因组序列进行分类。该项目将建立三个主要组成部分:1)一个工具箱,用于将物种组成可靠地分配给大量未组装的环境测序数据,并自动定期更新数据库和模型; 2)一个公共Web服务器,具有高性能的计算后端,可让广泛的生物学家建立针对其宏基因组样本的分类模型; 3)在线教学环境,其中学生和教育者将交互地将联合收割机若干机器学习算法组合成图形表示的流水线,将它们应用于注释基因组的序列,并有助于重新该项目开发的工具将帮助个人生物学家和有经验的生物信息学研究小组分析他们的宏基因组数据,以发现不能在实验室条件下生长的微生物中的新基因、蛋白质和代谢途径。这种对我们生活环境的基础科研最终将造福于公众,为替代能源和新药等应用研究领域提供必要的基础。任何宏基因组研究需要回答的第一个问题是样本中存在什么物种或更高的分类单位,并将个体序列与这些单位结合起来。该项目的新方法既不需要已知序列的现有同源性,也不需要将单个片段初步组装成更长的片段。它还将用户从复杂的数据管理和安装中解放出来,这超出了小型研究小组的能力。免费的交互式在线学习界面将为来自大学和高中的学生和教师提供实践经验和课程开发工具,无论他们位于何处。该项目开发的工具源代码可在开放源码开发网站SourceForge(http://sourceforge.net/projects/mgtaxa/)上查阅。将通过各种渠道提供网络服务:JCVI网站(http://www.jcvi.org/)和TeraGrid(http:www.teragrid.org)。将提交某些工具,供纳入现有的生物信息服务系统Galaxy(http:galaxy.psu.edu)和CAMERA(http:camera.calit2.net)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrey Tovchigrechko其他文献

FrameDiPT: SE(3) Diffusion Model for Protein Structure Inpainting
FrameDiPT:蛋白质结构修复的 SE(3) 扩散模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheng Zhang;Adam Leach;Thomas Makkink;Miguel Arbesú;Ibtissem Kadri;Daniel Luo;Liron Mizrahi;Sabrine Krichen;Maren Lang;Andrey Tovchigrechko;Nicolas Lopez Carranza;U. Şahin;Karim Beguir;Michael Rooney;Yunguan Fu
  • 通讯作者:
    Yunguan Fu
High-speed microbial community profiling
高速微生物群落分析
  • DOI:
    10.1038/nmeth.2080
  • 发表时间:
    2012-06-10
  • 期刊:
  • 影响因子:
    32.100
  • 作者:
    Daniel H Haft;Andrey Tovchigrechko
  • 通讯作者:
    Andrey Tovchigrechko
LightMHC: A Light Model for pMHC Structure Prediction with Graph Neural Networks
LightMHC:使用图神经网络进行 pMHC 结构预测的 Light 模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antoine P. Delaunay;Yunguan Fu;Nikolai Gorbushin;R. McHardy;Bachir A. Djermani;Liviu Copoiu;Michael Rooney;Maren Lang;Andrey Tovchigrechko;U. Şahin;Karim Beguir;Nicolas Lopez Carranza
  • 通讯作者:
    Nicolas Lopez Carranza

Andrey Tovchigrechko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrey Tovchigrechko', 18)}}的其他基金

CiC: (SEA): Exploring Azure as a Platform for Interactive Protein-Protein Docking
CiC:(SEA):探索 Azure 作为交互式蛋白质-蛋白质对接平台
  • 批准号:
    1048199
  • 财政年份:
    2011
  • 资助金额:
    $ 80.94万
  • 项目类别:
    Standard Grant

相似海外基金

Server / HPC Cluster
服务器/HPC集群
  • 批准号:
    527049502
  • 财政年份:
    2024
  • 资助金额:
    $ 80.94万
  • 项目类别:
    Major Research Instrumentation
An all-in-one web server for RNA structure prediction using evolutionary information
一种使用进化信息预测 RNA 结构的一体化网络服务器
  • 批准号:
    10574944
  • 财政年份:
    2023
  • 资助金额:
    $ 80.94万
  • 项目类别:
Efficient Consolidation for DBMSes on a Server Machine with Persistent Memory
具有持久内存的服务器计算机上的 DBMS 的高效整合
  • 批准号:
    23H03367
  • 财政年份:
    2023
  • 资助金额:
    $ 80.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
GPU-Compute Server
GPU计算服务器
  • 批准号:
    530008379
  • 财政年份:
    2023
  • 资助金额:
    $ 80.94万
  • 项目类别:
    Major Research Instrumentation
Acquiring a GPU server to accelerate developing deep learning methods to reconstruct protein structures from cryo-EM data
购买 GPU 服务器以加速开发深度学习方法,以从冷冻电镜数据重建蛋白质结构
  • 批准号:
    10795465
  • 财政年份:
    2022
  • 资助金额:
    $ 80.94万
  • 项目类别:
IRIS hardware grant for FY2022, SKA high RAM server
2022 财年 IRIS 硬件拨款、SKA 高 RAM 服务器
  • 批准号:
    ST/X00564X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 80.94万
  • 项目类别:
    Research Grant
SHF: Small: Massively Parallel Server Processors
SHF:小型:大规模并行服务器处理器
  • 批准号:
    2153297
  • 财政年份:
    2022
  • 资助金额:
    $ 80.94万
  • 项目类别:
    Standard Grant
Towards Provable Security of Real-world Servers: Where Online Learning Meets Server Retrofitting
实现现实服务器的可证明安全性:在线学习与服务器改造的结合
  • 批准号:
    2140175
  • 财政年份:
    2022
  • 资助金额:
    $ 80.94万
  • 项目类别:
    Standard Grant
Utilizing Conducted Electromagnetic Interference (EMI) for Low-Cost Server-Level Power Monitoring in Data Centers
利用传导电磁干扰 (EMI) 进行数据中心的低成本服务器级电源监控
  • 批准号:
    2152357
  • 财政年份:
    2022
  • 资助金额:
    $ 80.94万
  • 项目类别:
    Standard Grant
Excellence in Research: PathoRadi ‒ an interactive web server for AI-assisted radiologic-pathologic image analysis, correlation and visualization
卓越研究:PathoRadi — 用于人工智能辅助放射病理图像分析、关联和可视化的交互式网络服务器
  • 批准号:
    2200585
  • 财政年份:
    2022
  • 资助金额:
    $ 80.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了