Undergraduate Knot Theory Conference; Granville, OH, July 2009
本科结理论会议;
基本信息
- 批准号:0852276
- 负责人:
- 金额:$ 2.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0852276Principal Investigator: Lewis D. Ludwig, Colin C. AdamsThis grant is to fund the first ever Undergraduate Knot TheoryConference to take place at Denison University in summer,2009. Over the last few decades, there has been a dramaticincrease in the involvement of undergraduates in mathematicalresearch. Knot theory particularly lends itself to this endeavorsince it is highly pictorial, one can easily stated openproblems, and students can get actively involved with examplesfrom the first day. A variety of Research Experience forUndergraduate (REU) summer programs have pursued research on thistopic. Moreover, there have been various workshops funded by NSFand the MAA that have helped undergraduate faculty to pursueresearch with students in knot theory.This conference will bring together a variety of mathematiciansat various stages in their careers: undergraduates who are eitherinterested or have already done research in knot theory, graduatestudents with undergraduate knot theory experience, facultymembers interested in working with undergraduates on knot theoryresearch, and four senior researchers in the field who will giveplenary lectures. There will be a wide range of talks by theother participants, some on research and some expository. As acenterpiece, we will have a collective problem session to giveparticipants numerous ideas for future research directions. Thisconference will provide an opportunity for students to experiencea mathematics research conference that is specifically designedand directed toward them. Moreover, the conference willestablish a supportive network of students and faculty with aninterest in knot theory research, thus furthering the involvementof students in the field of mathematics.http://www.denison.edu/academics/departments/mathcs/unknot
摘要奖:DMS-0852276主要研究者:刘易斯D.作者:Colin C.亚当斯这笔赠款是资助有史以来第一次本科纽结理论会议将于2009年夏天在丹尼森大学举行。在过去的几十年里,本科生参与药理学研究的人数急剧增加。纽结理论特别适合这种努力,因为它是高度形象化的,人们可以很容易地提出开放的问题,学生可以从第一天起就积极参与到例子中。各种各样的本科生研究经验(REU)暑期项目都在进行这方面的研究。此外,NSF和MAA资助了各种研讨会,帮助本科教师与学生一起研究纽结理论。这次会议将汇集各种数学家在他们职业生涯的各个阶段:对纽结理论感兴趣或已经做过研究的本科生,有本科纽结理论经验的研究生,有兴趣与本科生一起研究纽结理论的教员,和四位该领域的高级研究人员,他们将在全体会议上发表演讲。 其他与会者将进行广泛的讨论,有些是关于研究的,有些是关于暂时性的。 作为一个中心,我们将有一个集体的问题会议,给与会者许多想法,为未来的研究方向。 这次会议将提供一个机会,让学生体验一个数学研究会议,是专门设计和针对他们。 此外,会议将建立一个支持网络的学生和教师在结理论研究的兴趣,从而促进学生在该领域的参与mathematics.http://www.denison.edu/academics/departments/mathcs/unknot
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lewis Ludwig其他文献
Lewis Ludwig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lewis Ludwig', 18)}}的其他基金
Undergraduate Knot Theory Conference III
本科结理论会议III
- 批准号:
1561524 - 财政年份:2016
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
Undergraduate Knot Theory Conference II
本科结理论会议II
- 批准号:
1206168 - 财政年份:2012
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
2005 Summer Conference on Topology and Its Applications; July 10-13, 2005; Granville, OH
2005年夏季拓扑及其应用会议;
- 批准号:
0443791 - 财政年份:2005
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
相似海外基金
RUI: Pure and Applied Knot Theory: Skeins, Hyperbolic Volumes, and Biopolymers
RUI:纯结理论和应用结理论:绞纱、双曲体积和生物聚合物
- 批准号:
2305414 - 财政年份:2023
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
Knot theory and low-dimensional topology
纽结理论和低维拓扑
- 批准号:
RGPIN-2021-04229 - 财政年份:2022
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
String theory, knot theory, thermal QCD and string cosmology
弦理论、纽结理论、热 QCD 和弦宇宙学
- 批准号:
SAPIN-2019-00039 - 财政年份:2022
- 资助金额:
$ 2.8万 - 项目类别:
Subatomic Physics Envelope - Individual
Poly-Time Knot Theory and Quantum Algebra
多时间结理论和量子代数
- 批准号:
RGPIN-2018-04350 - 财政年份:2022
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
Knot theory and computational complexity
结理论和计算复杂性
- 批准号:
572776-2022 - 财政年份:2022
- 资助金额:
$ 2.8万 - 项目类别:
University Undergraduate Student Research Awards
REU Site: Tiling Theory, Knot Theory, Optimization, Matrix Analysis, and Image Reconstruction
REU 站点:平铺理论、结理论、优化、矩阵分析和图像重建
- 批准号:
2150511 - 财政年份:2022
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
Knot theory and low-dimensional topology
纽结理论和低维拓扑
- 批准号:
RGPIN-2021-04229 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Statistical mechanics and knot theory in algebraic combinatorics
职业:代数组合中的统计力学和纽结理论
- 批准号:
2046915 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
Continuing Grant
Cluster Algebras, Combinatorics, and Knot Theory
簇代数、组合学和结理论
- 批准号:
2054561 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
Construction of Conjugated Macrocycles Based on Knot Theory and the Circularly Polarized Luminescence Behaviors
基于结理论和圆偏振发光行为的共轭大环化合物的构建
- 批准号:
21K18967 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)