CAREER: Statistical mechanics and knot theory in algebraic combinatorics

职业:代数组合中的统计力学和纽结理论

基本信息

  • 批准号:
    2046915
  • 负责人:
  • 金额:
    $ 39.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

A mathematical knot is obtained by taking a piece of rope, tangling it in some way, and then joining the ends. A classical question in knot theory asks whether two knots can be obtained from each other by continuously transforming the rope. One way to distinguish two knots is to compute their knot invariants. Some of the most powerful knot invariants include the HOMFLY polynomial and its recent generalization known as Khovanov–Rozansky homology. For instance, the HOMFLY polynomial is used in molecular biology to study how DNA molecules are folded in space. In this project, we relate these knot invariants to objects arising naturally in algebraic combinatorics, a field which applies algebraic methods to study discrete objects such as binomial coefficients or triangulations of a polygon. The number of possible triangulations of a polygon is counted by the famous Catalan number sequence. One of the main results of the project gives a natural geometric interpretation of Catalan numbers, by means of relating them to Khovanov–Rozansky knot homology and the HOMFLY polynomial. The objects that appear along the way are interpreted from the point of view of statistical mechanics, which deals with macroscopic observations of a physical system consisting of a large number of particles. For example, the geometric spaces in question are directly linked to the Ising model at critical temperature, which describes ferromagnetic properties of a flat metal plate at the Curie point. The award also provides funding for the involvement of undergraduate students, graduate students and postdocs in the PI's research.The Grassmannian is stratified by spaces known as positroid varieties. In a joint project with Thomas Lam, the Principal Investigator (PI) studies the mixed Hodge structure on the cohomology of positroid varieties. The main result states that the bigraded Poincaré polynomial of the top-dimensional positroid variety is given by the (rational) q,t-Catalan number, introduced in the works of Garsia–Haiman and Loehr–Warrington. The proof proceeds by associating a link to each positroid variety, and relating its cohomology to the Khovanov–Rozansky homology of the associated link. The point count of the positroid variety is therefore given by a coefficient of the HOMFLY polynomial of the link. The PI has recently shown that the point count is given by certain observables in the stochastic six-vertex model. Separately, positroid varieties were connected to the Ising model in the joint work of the PI with Pavlo Pylyavskyy. In this project, the PI uses this relation to give a direct formula for boundary correlations of Baxter's critical Z-invariant Ising model. This formula is applied to questions of universality and conformal invariance of the model, studied by Smirnov et al.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学结是通过拿一根绳子,以某种方式缠绕在一起,然后将两端连接起来得到的。绳结理论中的一个经典问题是,通过不断变换绳索,能否从对方获得两个绳结。区分两个结的一种方法是计算它们的结不变量。一些最强大的纽结不变量包括HOMFLY多项式及其最近被称为Khovanov-Rozansky同调的推广。例如,HOMFLY多项式在分子生物学中被用来研究DNA分子如何在空间中折叠。在这个项目中,我们将这些纽结不变量与代数组合学中自然产生的对象联系起来,代数组合学是一个应用代数方法来研究离散对象,如多边形的二项式系数或三角剖分的领域。通过著名的加泰罗尼亚数列来计算多边形可能的三角剖分的数目。该项目的一个主要结果通过将加泰罗尼亚数与Khovanov-Rozansky纽结同调和HOMFLY多项式联系起来,给出了加泰罗尼亚数的自然几何解释。沿途出现的物体是从统计力学的角度来解释的,统计力学处理的是由大量粒子组成的物理系统的宏观观测。例如,所讨论的几何空间直接与临界温度下的伊辛模型相联系,该模型描述了金属平板在居里点的铁磁性质。该奖项还为参与PI研究的本科生、研究生和博士后提供资金。在与Thomas Lam的一个联合项目中,首席调查员(PI)研究了混合Hodge结构对正核变种上同调的影响。主要结果表明,顶维正拟态簇的二次Poincaré多项式是由Garsia-Haiman和Loehr-Warrington工作中引入的(有理)q,t-Catalan数给出的。证明的方法是将一个环与每个正态簇联系起来,并将它的上同调与相关环的Khovanov-Rozansky同调联系起来。因此,正螺线变种的点数由连杆的HOMFLY多项式的系数给出。PI最近表明,在随机六顶点模型中,点计数是由某些观测值给出的。另外,在PI和Pavlo Pylyavsky的联合工作中,正态变种被连接到Ising模型。在这个项目中,PI使用这个关系给出了Baxter临界Z不变伊辛模型的边界关联的直接公式。这个公式被应用于Smirnov等人研究的模型的普适性和共形不变性问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The totally nonnegative Grassmannian is a ball
完全非负的格拉斯曼函数是一个球
  • DOI:
    10.1016/j.aim.2021.108123
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Galashin, Pavel;Karp, Steven N.;Lam, Thomas
  • 通讯作者:
    Lam, Thomas
Higher secondary polytopes and regular plabic graphs
高级二级多面体和正则平面图
  • DOI:
    10.1016/j.aim.2022.108549
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Galashin, Pavel;Postnikov, Alexander;Williams, Lauren
  • 通讯作者:
    Williams, Lauren
Regularity theorem for totally nonnegative flag varieties
A formula for boundary correlations of the critical Ising model
临界伊辛模型的边界相关性公式
Positroids, knots, and q, t-Catalan numbers
正类、结和 q、t-Catalan 数
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pavel Galashin其他文献

Index to the Mathematical Gazette
数学公报索引
  • DOI:
  • 发表时间:
    1976
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Pavel Galashin;P. Pylyavskyy
  • 通讯作者:
    P. Pylyavskyy
Manifolds associated to simple games
与简单游戏相关的流形
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pavel Galashin;G. Panina
  • 通讯作者:
    G. Panina
Weak separation, pure domains and cluster distance
弱分离、纯域和簇距离
Move-reduced graphs on a torus
环面上的移动简化图
The classification of Zamolodchikov periodic quivers
Zamolodchikov周期性颤动的分类

Pavel Galashin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pavel Galashin', 18)}}的其他基金

Totally Positive Spaces and Cluster Algebras
完全正空间和簇代数
  • 批准号:
    1954121
  • 财政年份:
    2020
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Probability and Mathematical Statistical Mechanics
职业:概率和数学统计力学
  • 批准号:
    2238423
  • 财政年份:
    2023
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Mechanics of Cellular Structures
职业:细胞结构的统计力学
  • 批准号:
    2046683
  • 财政年份:
    2021
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Mechanics of Slender Structures
职业:细长结构的统计力学
  • 批准号:
    1752100
  • 财政年份:
    2018
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Continuing Grant
CAREER: Research and training in advanced computational methods for quantum and statistical mechanics
职业:量子和统计力学高级计算方法的研究和培训
  • 批准号:
    1454939
  • 财政年份:
    2015
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Continuing Grant
CAREER: Halting Problems In Statistical Mechanics
职业:解决统计力学中的问题
  • 批准号:
    1455272
  • 财政年份:
    2015
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Continuing Grant
CAREER: Statistical mechanics of superconductors and other macroscopic phenomena
职业:超导体和其他宏观现象的统计力学
  • 批准号:
    1254791
  • 财政年份:
    2013
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Continuing Grant
CAREER: Designing quantum computers and understanding glassy systems using numerical simulations and statistical mechanics
职业:使用数值模拟和统计力学设计量子计算机并理解玻璃系统
  • 批准号:
    1151387
  • 财政年份:
    2012
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Continuing Grant
CAREER: The Statistical Mechanics of Filamentous Assemblies
职业:丝状组件的统计力学
  • 批准号:
    0955760
  • 财政年份:
    2010
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Continuing Grant
CAREER: Dynamics and Statistical Mechanics of Multicomponent Quantum Fluids
职业:多组分量子流体的动力学和统计力学
  • 批准号:
    0846788
  • 财政年份:
    2009
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Standard Grant
CAREER: Statistical Mechanics of Particulate Systems Far from Equilibrium
职业:远离平衡的颗粒系统的统计力学
  • 批准号:
    0239504
  • 财政年份:
    2003
  • 资助金额:
    $ 39.93万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了