Undergraduate Knot Theory Conference III

本科结理论会议III

基本信息

  • 批准号:
    1561524
  • 负责人:
  • 金额:
    $ 3.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

This proposal is to fund the Undergraduate Knot Theory Conference 2016 to bring together undergraduates and undergraduate faculty interested in knot theory, to be held at Denison University from July 31 to August 2, 2016 as a satellite conference to "2016 MathFest" which will take place in Columbus, OH. Knot theory is a field very amenable to research by undergraduates. There are a variety of REU programs with a knot theory component. Moreover, there are many faculty members who would like to involve their students in undergraduate research in knot theory. This conference will bring together experts in knot theory with undergraduates who are either currently participating in knot theory REUs, undergraduates who have participated in knot theory research, current graduate students who participated as undergraduates in knot theory research, and perhaps most importantly, faculty who either have involved undergraduates in knot theory research or who would like to involve undergraduates.As a centerpiece, the organizers plan to have a collective problem session to give participants numerous ideas for future research directions. This conference will provide an opportunity for students to experience a mathematics research conference that is specifically designed and directed toward them. Moreover, the conference will establish a supportive network of students and faculty with an interest in knot theory research, thus furthering the involvement of students in the field of mathematics. The conference URL is www.denison.edu/unknot.
这项建议是资助本科结理论会议2016年汇集本科生和本科生教师结理论感兴趣,将于2016年7月31日至8月2日在丹尼森大学举行的卫星会议,以“2016年数学节”,这将发生在哥伦布,俄亥俄州。 纽结理论是一个非常适合大学生研究的领域。有各种各样的REU程序与纽结理论组件。 此外,有许多教师谁愿意让他们的学生在本科研究纽结理论。 本次会议将汇集结理论专家与本科生谁是目前正在参与结理论雷乌斯,本科生谁参加了结理论研究,目前的研究生谁参加了结理论研究的本科生,也许最重要的是,教师谁要么参与了结理论研究的本科生或谁愿意参与本科生。作为一个核心,主办单位计划举办集体问题研讨会,让参加者对未来的研究方向有许多想法。这次会议将为学生提供一个机会,体验一个专门设计和针对他们的数学研究会议。此外,会议将建立一个支持网络的学生和教师与结理论研究的兴趣,从而进一步促进学生在数学领域的参与。会议的URL是www.denison.edu/unknot。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lewis Ludwig其他文献

Lewis Ludwig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lewis Ludwig', 18)}}的其他基金

Undergraduate Knot Theory Conference II
本科结理论会议II
  • 批准号:
    1206168
  • 财政年份:
    2012
  • 资助金额:
    $ 3.94万
  • 项目类别:
    Standard Grant
Undergraduate Knot Theory Conference; Granville, OH, July 2009
本科结理论会议;
  • 批准号:
    0852276
  • 财政年份:
    2009
  • 资助金额:
    $ 3.94万
  • 项目类别:
    Standard Grant
Technically Speaking
从技术上讲
  • 批准号:
    0632804
  • 财政年份:
    2007
  • 资助金额:
    $ 3.94万
  • 项目类别:
    Standard Grant
2005 Summer Conference on Topology and Its Applications; July 10-13, 2005; Granville, OH
2005年夏季拓扑及其应用会议;
  • 批准号:
    0443791
  • 财政年份:
    2005
  • 资助金额:
    $ 3.94万
  • 项目类别:
    Standard Grant

相似海外基金

RUI: Pure and Applied Knot Theory: Skeins, Hyperbolic Volumes, and Biopolymers
RUI:纯结理论和应用结理论:绞纱、双曲体积和生物聚合物
  • 批准号:
    2305414
  • 财政年份:
    2023
  • 资助金额:
    $ 3.94万
  • 项目类别:
    Standard Grant
Knot theory and low-dimensional topology
纽结理论和低维拓扑
  • 批准号:
    RGPIN-2021-04229
  • 财政年份:
    2022
  • 资助金额:
    $ 3.94万
  • 项目类别:
    Discovery Grants Program - Individual
String theory, knot theory, thermal QCD and string cosmology
弦理论、纽结理论、热 QCD 和弦宇宙学
  • 批准号:
    SAPIN-2019-00039
  • 财政年份:
    2022
  • 资助金额:
    $ 3.94万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Poly-Time Knot Theory and Quantum Algebra
多时间结理论和量子代数
  • 批准号:
    RGPIN-2018-04350
  • 财政年份:
    2022
  • 资助金额:
    $ 3.94万
  • 项目类别:
    Discovery Grants Program - Individual
Knot theory and computational complexity
结理论和计算复杂性
  • 批准号:
    572776-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 3.94万
  • 项目类别:
    University Undergraduate Student Research Awards
REU Site: Tiling Theory, Knot Theory, Optimization, Matrix Analysis, and Image Reconstruction
REU 站点:平铺理论、结理论、优化、矩阵分析和图像重建
  • 批准号:
    2150511
  • 财政年份:
    2022
  • 资助金额:
    $ 3.94万
  • 项目类别:
    Standard Grant
Knot theory and low-dimensional topology
纽结理论和低维拓扑
  • 批准号:
    RGPIN-2021-04229
  • 财政年份:
    2021
  • 资助金额:
    $ 3.94万
  • 项目类别:
    Discovery Grants Program - Individual
Construction of Conjugated Macrocycles Based on Knot Theory and the Circularly Polarized Luminescence Behaviors
基于结理论和圆偏振发光行为的共轭大环化合物的构建
  • 批准号:
    21K18967
  • 财政年份:
    2021
  • 资助金额:
    $ 3.94万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Statistical mechanics and knot theory in algebraic combinatorics
职业:代数组合中的统计力学和纽结理论
  • 批准号:
    2046915
  • 财政年份:
    2021
  • 资助金额:
    $ 3.94万
  • 项目类别:
    Continuing Grant
Cluster Algebras, Combinatorics, and Knot Theory
簇代数、组合学和结理论
  • 批准号:
    2054561
  • 财政年份:
    2021
  • 资助金额:
    $ 3.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了