GOALI: Gated Tunneling Devices from Nano-wire Core Shell Structures for Low-poer Applications

GOALI:用于低功率应用的纳米线核壳结构的门控隧道器件

基本信息

  • 批准号:
    0852965
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

Research Objectives and Approaches:The objective of this research is to address one of the most pressing questions in the area of electronics ?how to reduce power consumption in new generations of field-effect transistors.The approach is to employ for the first time a silicon/germanium nanowire heterostructure in a core-shell arrangement to enable a novel type of gated tunneling device structure. This device makes explicit use of the one-dimensionality of the system by employing the quantum capacitance limit.Intellectual Merit:While transistors have been scaled substantially over the course of the last few decades, power consumption kept increasing due to the use of "conventional" devices. The proposed tunneling transistor development from a coaxial nanowire heterostructure utilizing germanium and silicon is capable of overcoming this major obstacle by employing a band pass filter type arrangement. A one-dimensional wire structure can truly exploit this tunneling approach to create a device with substantially reduced power consumption specs while the use of industry compatible materials allows technology transfer at a later stage.Broader Impact:The proposed work will add to the current understanding of the impact of the quantum capacitance in low-dimensional systems with respect to future low-power devices applications.At the same time the proposed effort includes an integrated education and outreach program that addresses challenges in current nano- materials and devices related education. The proposed program includes 1) the development of a course on "One-Dimensional Nanoelectronics", and 2) an effort on mentoring through Women in Science and Women in Engineering.
研究目标和方法:本研究的目的是解决电子领域最紧迫的问题之一?如何降低新一代场效应晶体管的功耗。该方法是首次采用硅/锗纳米线异质结构的核壳结构,以实现新型的栅控隧穿器件结构。该器件通过引入量子电容极限,明确地利用了系统的一维性。智力上的优点:虽然晶体管在过去几十年中已经大幅度缩小,但由于使用“传统”器件,功耗不断增加。所提出的从利用锗和硅的同轴纳米线异质结构开发的隧穿晶体管能够通过采用带通滤波器类型的布置来克服这个主要障碍。一维导线结构可以真正利用这种隧穿方法来创建具有大幅降低功耗规格的器件,而使用行业兼容材料可以在稍后阶段进行技术转移。更广泛的影响:拟议的工作将增加目前对低维系统中量子电容影响的理解,对于未来的低功耗器件应用。同时,拟议的努力包括一个综合教育和推广计划,解决当前纳米材料和器件相关教育的挑战。拟议的方案包括:(1)开设“一维纳米电子学”课程;(2)努力通过科学界妇女和工程界妇女提供指导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joerg Appenzeller其他文献

Scheme for the fabrication of ultrashort channel metal-oxide-semiconductor field-effect transistors
超短沟道金属氧化物半导体场效应晶体管的制造方案
  • DOI:
    10.1063/1.126956
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joerg Appenzeller;R. Martel;P. Solomon;Kevin K. Chan;P. Avouris;J. Knoch;J. Benedict;M. Tanner;S. Thomas;K. Wang;J. Alamo
  • 通讯作者:
    J. Alamo
Cross-Coupled Gated Tunneling Diodes With Unprecedented PVCRs Enabling Compact SRAM Design—Part I: Device Concept
具有前所未有的 PVCR 的交叉耦合门控隧道二极管支持紧凑型 SRAM 设计 — 第一部分:器件概念
  • DOI:
    10.1109/ted.2022.3207139
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Peng Wu;Mengyuan Li;Bo Zhou;X. Hu;Joerg Appenzeller
  • 通讯作者:
    Joerg Appenzeller
Transistors based on two-dimensional materials for future integrated circuits
基于二维材料的晶体管用于未来集成电路
  • DOI:
    10.1038/s41928-021-00670-1
  • 发表时间:
    2021-11-25
  • 期刊:
  • 影响因子:
    40.900
  • 作者:
    Saptarshi Das;Amritanand Sebastian;Eric Pop;Connor J. McClellan;Aaron D. Franklin;Tibor Grasser;Theresia Knobloch;Yury Illarionov;Ashish V. Penumatcha;Joerg Appenzeller;Zhihong Chen;Wenjuan Zhu;Inge Asselberghs;Lain-Jong Li;Uygar E. Avci;Navakanta Bhat;Thomas D. Anthopoulos;Rajendra Singh
  • 通讯作者:
    Rajendra Singh
Experimental demonstration of an on-chip p-bit core based on stochastic magnetic tunnel junctions and 2D MoS2 transistors
基于随机磁隧道结和二维 MoS2 晶体管的片上 p 位核心的实验演示
  • DOI:
    10.1038/s41467-024-48152-0
  • 发表时间:
    2024-05-15
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    John Daniel;Zheng Sun;Xuejian Zhang;Yuanqiu Tan;Neil Dilley;Zhihong Chen;Joerg Appenzeller
  • 通讯作者:
    Joerg Appenzeller
5-1-2007 1 / f noise in carbon nanotube devices-On the impact of contacts and device geometry
5-1-2007 碳纳米管器件中的1/f噪声-关于接触和器件几何形状的影响
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joerg Appenzeller;Yu
  • 通讯作者:
    Yu

Joerg Appenzeller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joerg Appenzeller', 18)}}的其他基金

Collaborative Research: FET: Medium: Probabilistic Computing Through Integrated Nano-devices – A Device to Systems Approach
合作研究:FET:中:通过集成纳米设备进行概率计算 — 设备到系统方法
  • 批准号:
    2106501
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
E2CDA: Type I: Probabilistic Spin Logic for Low-Energy Boolean and Non-Boolean Computing
E2CDA:类型 I:用于低能量布尔和非布尔计算的概率自旋逻辑
  • 批准号:
    1739635
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant

相似海外基金

FastMOT - Fast gated superconducting nanowire camera for multi-functional optical tomograph
FastMOT - 用于多功能光学断层扫描的快速门控超导纳米线相机
  • 批准号:
    10063660
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    EU-Funded
Structural dynamics of voltage-gated ion channels and their implications for ion permeation and drug modulation
电压门控离子通道的结构动力学及其对离子渗透和药物调节的影响
  • 批准号:
    10583283
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
A functional characterization of Brugia malayi GABA-gated chloride channels: an unexplored target for antifilarial therapeutics
马来丝虫 GABA 门控氯离子通道的功能表征:抗丝虫治疗的未探索靶点
  • 批准号:
    10742453
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Chemical biology of voltage-gated cation channels
电压门控阳离子通道的化学生物学
  • 批准号:
    10552311
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Tuning the activating stimulus of voltage-gated sodium channels
调节电压门控钠通道的激活刺激
  • 批准号:
    DP230100728
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Projects
CAREER: New Reporters for Temporally-Gated Integration of Neuronal Activity
职业生涯:神经元活动时间门控整合的新报告基因
  • 批准号:
    2235835
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Anion-Gated Dual Catalysis: Alkene Difunctionalization Accelerated by High Throughput Experimentation
阴离子门控双重催化:高通量实验加速烯烃双官能化
  • 批准号:
    EP/X015262/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Logic-gated pro-MMP activation for tumor-specific motility in nanocarriers
纳米载体中肿瘤特异性运动的逻辑门控 MMP 前体激活
  • 批准号:
    2220667
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Dissecting the Forward Trafficking of Presynaptic Voltage Gated Calcium Channels
剖析突触前电压门控钙通道的前向运输
  • 批准号:
    10601491
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Regulatory mechanisms of voltage-gated calcium channels
电压门控钙通道的调节机制
  • 批准号:
    460689
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了