Micropatterned Thermoresponsive Nanocomposite Hydrogel Surfaces with Self-Cleaning Behavior

具有自清洁行为的微图案热响应纳米复合水凝胶表面

基本信息

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). 0854462GrunlanINTELLECTUAL MERIT The project investigates temperature controlled activation of micro nano structured nanocomposite hydrogel materials to produce temperature controlled self cleaning surfaces. Cyclical changes in temperature will activate these nanocomposite hydrogel micropillars by switching them back and forth from a water swollen to deswollen state. This activation process will lead to pronounced and rapid changes in surface properties ultimately allowing surfaces to rid themselves of adherent biofouling species such as cells. The proposed microstructured nanocomposite hydrogels may be particularly useful to design self cleaning implanted biosensor membranes or other surfaces whose performance is compromised by biofouling. Enhancing temperature activated self cleaning will be accomplished by a two pronged approach utilizing both material design and micropatterning design components. The investigators will prepare novel nanocomposite hydrogels consisting of poly (N-isopropylacrylamide) (PNIPAAm) hydrogel matrices and variable levels of colloidal polysiloxane nanoparticles. PNIPAAm hydrogels are known to become more hydrophobic when they reversibly switch from a water swollen to a shrunken (deswollen) state at temperatures above the volume phase transition temperature (VPTT) of ~35 °C. Such temperature activated changes in surface hydrophilicity/hydrophobicity have been shown to disrupt the adhesion of adsorbed cells and proteins. In preliminary studies, variable polysiloxane nanoparticle levels were used to tailor the temperature dependent surface properties of PNIPAAm hydrogels. These nanocomposite hydrogels demonstrated superior mechanical strength but did not alter the VPTT (conveniently near body temperature) compared to pure PNIPAAm hydrogels. For each unique composition, nanocomposite hydrogel microstructures (e.g. micropillars) will be prepared and, as a result of their size scale, should produce fast switching surfaces in which changes in hydrophilicity/hydrophobicity are very pronounced compared to their planar (i.e. non micropatterned) analogues. Tailoring nanocomposite hydrogel composition and microstructure topography will ultimately result in surfaces which could quickly and drastically respond to changes in temperature and hence undergo temperature controlled self cleaning. BROADER IMPACTS The project on design of robust self cleaning surfaces which combat biofouling has the potential to enhance the performance life time of many commercial devices equipment. Specifically, surfaces designed in this study have the potential to make long term implanted biosensors (e.g. for glucose monitoring) a clinical reality. This research will also reveal the role of polysiloxane nanoparticles and micropillar topography in tailoring the self cleaning properties of PNIPAAm hydrogels. Beyond the advancements in research, this work will effectively train undergraduate and graduate students in a broad, multi disciplinary research program consisting of materials design characterization, microfabrication of soft nanocomposite materials, and its direct application to self cleaning. The multidisciplinary nature of this research will provide a unique training environment for both graduate and undergraduate students from biomedical engineering, electrical engineering, and chemical engineering departments at Texas A&M University. Dr. Melissa Grunlan (PI; Dept. of Biomedical Engineering) will guide the efforts to design and synthesize planar nanocomposite hydrogels and characterize their material properties. Dr. Arum Han (Co-PI; Dept. of Electrical Engineering), an expert in nano microfabrication for bio applications, will focus on the preparation of micropatterned surfaces via various photopolymerization and imprint methods using the materials developed in Dr. Grunlans lab. Dr. Mariah Han (Co-PI; Dept. of Chemical Engineering) will provide expertise in cell release studies. Throughout the duration, feedback will be provided by combined weekly group meetings to explore the best material surface topography combinations for optimal temperature activated self cleaning behavior and efficient microfabrication. This research will strengthen the existing partnership between three departments and effectively utilize resources of the PI, Co-PIs, and university centers. We will actively recruit pre doctoral candidates from under represented groups by their participation in summer Texas A&M University sponsored programs and directed studies throughout the school year. Various aspects of the proposed work will be taught to undergraduate and graduate students enrolled in courses taught by the PI and Co-PI.
该奖项是根据2009年《美国复苏和再投资法案》(公法111-5)提供资金的。0854462 GrunlanINTELLECTUAL优点该项目研究微纳米结构纳米复合水凝胶材料的温度控制活化,以生产温度控制的自清洁表面。温度的周期性变化将激活这些纳米复合水凝胶微柱,将它们从水膨胀到去膨胀状态来回切换。这种活化过程将导致表面性质发生显着和快速的变化,最终使表面摆脱附着的生物污垢物种,如细胞。所提出的微结构纳米复合水凝胶可能特别适用于设计自清洁植入式生物传感器膜或其他因生物污染而性能受损的表面。通过利用材料设计和微图案化设计组件的双管齐下的方法来实现增强温度激活的自清洁。研究人员将制备由聚(N-异丙基丙烯酰胺)(PNIPAAm)水凝胶基质和不同水平的胶体聚硅氧烷纳米颗粒组成的新型纳米复合水凝胶。众所周知,当PNIPAAm水凝胶在~35°C的体积相变温度(VPTT)以上可逆地从水膨胀转换到收缩(去溶胀)状态时,它们变得更加疏水。这种温度激活的表面亲水性/疏水性的变化被证明扰乱了吸附的细胞和蛋白质的粘附性。在初步研究中,可变的聚硅氧烷纳米颗粒水平被用来定制PNIPAAm水凝胶的随温度变化的表面性质。与纯PNIPAAm水凝胶相比,这些纳米复合水凝胶显示出优异的机械强度,但不会改变VPTT(方便地接近体温)。对于每个独特的组合物,将制备纳米复合水凝胶微结构(例如微柱),并且由于其尺寸大小,应该产生快速切换表面,其中亲水性/疏水性的变化比其平面(即非微图案化)类似物非常显著。裁剪纳米复合材料水凝胶的组成和微结构形貌最终将导致表面能够快速和剧烈地响应温度变化,从而进行温度控制的自洁。该项目对设计坚固的自清洁表面以对抗生物污垢具有更广泛的影响,有可能提高许多商业设备的性能和寿命。具体地说,本研究中设计的表面有可能使长期植入的生物传感器(例如用于血糖监测)成为临床现实。这项研究还将揭示聚硅氧烷纳米颗粒和微柱形貌在调整PNIPAAm水凝胶的自清洁性能方面所起的作用。除了在研究方面的进步,这项工作将有效地培养本科生和研究生进行广泛的、多学科的研究计划,包括材料设计表征、软纳米复合材料的微制造以及其直接应用于自清洁。这项研究的多学科性质将为德克萨斯农工大学生物医学工程、电气工程和化学工程系的研究生和本科生提供一个独特的培训环境。梅丽莎·格伦兰博士(PI;生物医学工程学)将指导设计和合成平面纳米复合水凝胶并表征其材料性能。韩亚伦博士(联席主任;电气工程),生物应用纳米微制造方面的专家,将利用Grunlans博士实验室开发的材料,通过各种光聚合和压印方法来制备微图案表面。韩丽雅博士(联席主任;化学工程部)将提供细胞释放研究方面的专业知识。在整个过程中,将通过每周联合小组会议提供反馈,以探索最佳材料表面形貌组合,以实现最佳的温度激活自清洁行为和高效的微制造。这项研究将加强三个部门之间现有的合作伙伴关系,并有效利用PI、Co-Pis和大学中心的资源。我们将通过参加夏季德克萨斯农工大学赞助的项目和整个学年的指导学习,积极从不具代表性的群体中招收博士前候选人。拟开展的工作的各个方面都将教授给就读于国际和平协会和联合国际教授的课程的本科生和研究生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melissa Grunlan其他文献

42. Self-fitting Vaginal Stents from Biodegradable, Shape Memory Polymers
  • DOI:
    10.1016/j.jpag.2023.01.130
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Arian Veyssi;Andrew Robinson;Elizabeth Cosgriff-Hernadez;Courteney Roberts;Felipe Beltran;Sarah Beck;Melissa Grunlan;Jennifer M. McCracken;Julie Hakim
  • 通讯作者:
    Julie Hakim

Melissa Grunlan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melissa Grunlan', 18)}}的其他基金

An Injectable Glucose Biosensor Based on a Self-cleaning Membrane & NIR FRET Assay
基于自清洁膜的可注射葡萄糖生物传感器
  • 批准号:
    2314639
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Next-Generation Nasal Drug Delivery Exploiting non-Newtonian Fluids and Smart Thermoresponsive Materials
利用非牛顿流体和智能热敏材料的下一代鼻腔药物输送
  • 批准号:
    2738356
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Retinal-adhesive thermoresponsive gel for AAV-mediated gene delivery to the outer retina
用于将 AAV 介导的基因传递至外视网膜的视网膜粘附热敏凝胶
  • 批准号:
    10709508
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Retinal-adhesive thermoresponsive gel for AAV-mediated gene delivery to the outer retina
用于将 AAV 介导的基因传递至外视网膜的视网膜粘附热敏凝胶
  • 批准号:
    10453146
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Cooling-Triggered Release Of Anesthetics From Thermoresponsive Gels For On Demand Pain Relief
冷却触发热敏凝胶释放麻醉剂,按需缓解疼痛
  • 批准号:
    10443868
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Cooling-Triggered Release Of Anesthetics From Thermoresponsive Gels For On Demand Pain Relief
冷却触发热敏凝胶释放麻醉剂,按需缓解疼痛
  • 批准号:
    10625361
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Cooling-Triggered Release Of Anesthetics From Thermoresponsive Gels For On Demand Pain Relief
冷却触发热敏凝胶释放麻醉剂,按需缓解疼痛
  • 批准号:
    10298503
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Development of versatile system for organic reactions in water using thermoresponsive micelles and catalyst-tethered polymers
使用热响应胶束和催化剂束缚聚合物开发水中有机反应的多功能系统
  • 批准号:
    21K05074
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synthesis of Thermoresponsive Unnatural Oligoaminosaccharides and the Control of the Functions
温敏性非天然低聚氨基糖的合成及功能调控
  • 批准号:
    20K15336
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Reverse engineering methods for elucidating the molecular assembly mechanisms of thermoresponsive peptide-based conjugates: computation and experiment
阐明温敏肽缀合物分子组装机制的逆向工程方法:计算和实验
  • 批准号:
    2023668
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Engineering thermoresponsive materials via supracolloidal assembly in polymer-stabilised emulsions.
通过聚合物稳定乳液中的超胶体组装来工程热响应材料。
  • 批准号:
    EP/T00813X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了