Collaborative Research: Semiclassical Methods for the Study of Spin Systems
合作研究:自旋系统研究的半经典方法
基本信息
- 批准号:0854896
- 负责人:
- 金额:$ 25.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Research will be carried out into the semiclassical behavior of spin systems, using spin-coherent-state path integrals and other mathematical and theoretical physics tools. A significant part of this research will be done in the context of understanding a variety of experimentally realizable physical systems. Coherent-state path integrals, especially those for spin, have long been regarded as mathematically difficult to work with. In the last few years, however, there have been several advances in the understanding and uses of these path integrals which have opened up many new areas for study. The basic problems to be pursued include (i) operator ordering, and Bohr-Sommerfeld rules, possibly to higher than leading order in the semiclassical limit, (ii) development of Gutzwiller-like trace formulas, based on the recent evaluation of the semiclassical propagator for multispin systems, (iii) group theoretic decomposition rules for the addition of angular momenta via path integrals, (iv) semiclassical behaviour of such rules, and (v) study of the multispin propagator from the viewpoint of the global anomaly. The physical systems to which the fundamental theoretical developments will be applied include (i) small magnetic molecules in molecular solids, especially via the trace formula, (ii) so-called Bose-Hubbard models for atomic condensates in optical lattices, (iii)antiferromagnetic spin chains, with emphasis on the role of anisotropy, and (iv) lattice spin models. Many of the concepts involved in the spin case are shared by particle coherent-state path integrals, which will also be employed to understand unresolved issues in the thermostatistical escape of metastable systems. The calculations will be largely analytic, but numerical approaches will be employed as needed. The extension of path-integral methods to spin systems, and study of their relationship to other methods for studying the semiclassical limit, is a desirable addition to theoretical physicists' arsenal, since path integrals have a proven record as an essential tool in statistical and quantum mechanics. Broader Impacts: The project will prepare future researchers through the training of undergraduate and graduate students, and the mentoring of post-doctoral associates.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。研究将使用自旋相干态路径积分和其他数学和理论物理工具进行自旋系统的半经典行为。这项研究的一个重要部分将在理解各种实验可实现的物理系统的背景下进行。相干态路径积分,特别是自旋的路径积分,一直被认为是数学上难以处理的。然而,在过去的几年里,已经有一些进步的理解和使用这些路径积分开辟了许多新的研究领域。要追求的基本问题包括:(i)算子排序,和Bohr-Sommerfeld规则,可能高于半经典极限中的前导阶,(ii)基于最近对多自旋系统的半经典传播子的评估,发展Gutzwiller样迹公式,(iii)通过路径积分增加角动量的群论分解规则,(iv)这些规则的半经典行为,(v)从整体反常的观点研究多自旋传播子。物理系统的基本理论的发展将适用于包括(i)小磁性分子在分子固体,特别是通过跟踪公式,(ii)所谓的玻色哈伯德模型的原子凝聚在光学晶格,(iii)反铁磁自旋链,强调各向异性的作用,和(iv)晶格自旋模型。在自旋情况下涉及的许多概念是共享的粒子相干态路径积分,这也将被用来理解未解决的问题,在亚稳态系统的热统计逃逸。计算将主要是分析性的,但将根据需要采用数值方法。将路径积分方法扩展到自旋系统,并研究它们与其他研究半经典极限的方法的关系,是理论物理学家武器库中一个理想的补充,因为路径积分在统计和量子力学中已经被证明是一个重要的工具。更广泛的影响:该项目将通过对本科生和研究生的培训以及对博士后同事的指导,为未来的研究人员做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anupam Garg其他文献
Music mood and human emotion recognition based on physiological signals: a systematic review
- DOI:
10.1007/s00530-021-00786-6 - 发表时间:
2021-04-22 - 期刊:
- 影响因子:3.100
- 作者:
Vybhav Chaturvedi;Arman Beer Kaur;Vedansh Varshney;Anupam Garg;Gurpal Singh Chhabra;Munish Kumar - 通讯作者:
Munish Kumar
Anupam Garg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anupam Garg', 18)}}的其他基金
Studies of Mesoscopic Spin Systems: Magnetic Molecules and Formalism
介观自旋系统的研究:磁性分子和形式主义
- 批准号:
0202165 - 财政年份:2002
- 资助金额:
$ 25.8万 - 项目类别:
Continuing Grant
Macroscopic Quantum Phenomena in Magnetic Systems
磁系统中的宏观量子现象
- 批准号:
9306947 - 财政年份:1993
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant
Macroscopic Quantum Phenomena in Small Magnetic Particles
小磁性粒子中的宏观量子现象
- 批准号:
9102707 - 财政年份:1991
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
CSR: Small: Collaborative Research: System Research on Persistent High-Dimensional Data Access and Its Application to Semiclassical Molecular Dynamics Simulation
CSR:小型:协作研究:持久高维数据访问的系统研究及其在半经典分子动力学模拟中的应用
- 批准号:
1526055 - 财政年份:2015
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research:System Research on Persistent High-Dimensional Data Access and Its Application to Semiclassical Molecular Dynamics Simulation
CSR:小:协作研究:持久高维数据访问系统研究及其在半经典分子动力学模拟中的应用
- 批准号:
1526190 - 财政年份:2015
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant
Collaborative Research: Semiclassical Methods for the Study of Spin Systems
合作研究:自旋系统研究的半经典方法
- 批准号:
0855323 - 财政年份:2009
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant
FRG: Collaborative Research in Semiclassical Asymptotic Questions in Integrable Nonlinear Wave Theory
FRG:可积非线性波理论中半经典渐近问题的合作研究
- 批准号:
0451495 - 财政年份:2004
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant
FRG: Collaborative Research in Semiclassical Asymptotic Questions in Integrable Nonlinear Wave Theory
FRG:可积非线性波理论中半经典渐近问题的合作研究
- 批准号:
0354373 - 财政年份:2004
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant
International Research Fellowship Program: Computational Investigation of the Semiclassical Limit of Loop Quantum Gravity
国际研究奖学金计划:环量子引力半经典极限的计算研究
- 批准号:
0401966 - 财政年份:2004
- 资助金额:
$ 25.8万 - 项目类别:
Fellowship Award
FRG: Collaborative Research in Semiclassical Asymptotic Questions in Integrable Nonlinear Wave Theory
FRG:可积非线性波理论中半经典渐近问题的合作研究
- 批准号:
0354462 - 财政年份:2004
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant
FRG: Collaborative Research in Semiclassical Asymptotic Questions in Integrable Nonlinear Wave Theory
FRG:可积非线性波理论中半经典渐近问题的合作研究
- 批准号:
0354467 - 财政年份:2004
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant
U.S.-Brazil Cooperative Research: Semiclassical Methods forHeavy Ion Collisions
美国-巴西合作研究:重离子碰撞的半经典方法
- 批准号:
9116215 - 财政年份:1992
- 资助金额:
$ 25.8万 - 项目类别:
Standard Grant
Quantum and semiclassical studies in two-space dimensions; coll. research at the Tata Inst. of Fundamental Res., Bombay, the Inst. of Math. Sces., Madras and the Inst. of Physics, Bhubaneswar, India
二维空间中的量子和半经典研究;
- 批准号:
124607-1991 - 财政年份:1991
- 资助金额:
$ 25.8万 - 项目类别:
International Collaborative Research Grant