FRG - Advanced Algorithms and Software for Problems in Computational Bio-Fluid Dynamics

FRG - 用于计算生物流体动力学问题的先进算法和软件

基本信息

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The numerical modeling of the dynamics of biological fluid-structure interactions is a rapidly expanding research area in mathematical biology. We will consider two successful strategies for computing fluid-structure interactions which are popular in the applied mathematics community: the Method of Regularized Stokeslets (appropriate in the Stokes regime), and the Immersed Boundary Method (when inertial forces cannot be ignored). Both of these methods are popular partially because they offer a reasonably straightforward option for modeling complex boundaries interacting with an incompressible fluid. Unfortunately, in both cases there are substantial computational bottlenecks which severely limit the efficiency and/or accuracy of these methods for a wide class of problems. For example, in both methods, the stiffness of the structure can restrict the allowable explicit time-step of a computation by orders of magnitude. In addition, the desire to model fine scale features of biological structures requires spatially adaptive computations and parallel processing. Recent advances in multi-resolution temporal integration methods and integral based methods for fast summation and elliptic equations provide the technology to substantially increase the accuracy and efficiency of these methods, although the analysis and implementation of these algorithms has not been attempted. Our goal is to complete the mathematical and computational analysis necessary to implement efficient parallel, adaptive, multi-resolution time integration and fast summation methods for fluid-structure problems and to build a computational infrastructure that will enable researchers in the biological sciences to perform numerical simulations of biological systems on massively parallel computers.The development of improved algorithms and a computational interface to facilitate massively parallel computation will enable scientists to obtain a much more detailed understanding of the fluid dynamics in a wide range of problems in the biological and medical fields such as the swimming of fish or flying of insects, the reduction of drag in plants and trees by changes in shape or texture, and the pumping of blood in the heart or the flow of materials in the digestive system, the kidney, and the lungs. In particular, our software will allow researchers to begin to study increasingly complex problems such as fluid flow through bristled appendages, or interactions or coordination between multiple structures or organisms. Beyond obtaining fundamental insight into biological design, this work could motivate innovation in the field of biomimetics, where engineers look to biology for design strategies. For example, improved understanding of fin deformations in fish or jet propulsion in jellyfish is of interest to both the biological community and engineers working on micro underwater vehicles. Our computational methods can be applied to model other systems of interest in biommetics including muscular hydrostats such as octopus arms, earthworm bodies, and elephant trunks.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。生物流固相互作用动力学的数值模拟是数学生物学中一个迅速发展的研究领域。我们将考虑在应用数学界流行的两种计算流固相互作用的成功策略:正则化stokeslet方法(适用于Stokes状态)和浸入边界法(当惯性力不能忽略时)。这两种方法都很受欢迎,部分原因是它们为与不可压缩流体相互作用的复杂边界建模提供了一种相当直接的选择。不幸的是,在这两种情况下,都存在大量的计算瓶颈,这些瓶颈严重限制了这些方法对大量问题的效率和/或准确性。例如,在这两种方法中,结构的刚度可以在数量级上限制计算的允许显式时间步长。此外,对生物结构精细尺度特征的建模需要空间自适应计算和并行处理。快速求和和椭圆方程的多分辨率时间积分方法和基于积分的方法的最新进展为大大提高这些方法的精度和效率提供了技术,尽管这些算法的分析和实现尚未尝试。我们的目标是完成必要的数学和计算分析,以实现有效的并行,自适应,多分辨率时间积分和快速求和方法的流体结构问题,并建立一个计算基础设施,使生物科学研究人员能够在大规模并行计算机上进行生物系统的数值模拟。改进的算法和计算界面的发展促进大规模并行计算将使科学家能够获得更详细了解广泛的流体动力学问题在生物和医学领域如鱼的游泳或飞行的昆虫、植物和树木的减少阻力的变化形状或纹理,和血液在心脏的泵或流动的材料在消化系统,肾脏,还有肺。特别是,我们的软件将允许研究人员开始研究越来越复杂的问题,如流体流过刚毛附体,或多个结构或生物体之间的相互作用或协调。除了获得对生物设计的基本见解之外,这项工作还可以激发仿生学领域的创新,工程师们在仿生学领域寻找设计策略。例如,提高对鱼的鳍变形或水母的喷气推进的理解是生物界和研究微型水下航行器的工程师都感兴趣的。我们的计算方法可以应用于模拟其他生物仿生学中感兴趣的系统,包括肌肉流体静力学,如章鱼臂、蚯蚓体和象鼻。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laura Miller其他文献

Intractable Disagreements About Futility in the PICU
关于儿科重症监护病房(PICU)无效性的棘手分歧
Shared Decision Making and End-of-Life Discussions in the PICU
PICU 中的共同决策和临终讨论
Citizens and consumers: discursive debates during and after the Communications Act 2003
公民和消费者:2003 年《通信法》期间和之后的话语辩论
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Livingstone;P. Lunt;Laura Miller
  • 通讯作者:
    Laura Miller
Beauty Up: Exploring Contemporary Japanese Body Aesthetics
Beauty Up:探索当代日本身体美学
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laura Miller
  • 通讯作者:
    Laura Miller
An immersed boundary method based on the lattice Boltzmann approach in three dimensions, with application
  • DOI:
    10.1016/j.camwa.2010.03.022
  • 发表时间:
    2011-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Luoding Zhu;Guowei He;Shizhao Wang;Laura Miller;Xing Zhang;Qian You;Shiaofen Fang
  • 通讯作者:
    Shiaofen Fang

Laura Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laura Miller', 18)}}的其他基金

Collaborative Research: MUCUS: Measuring and Understanding the Cassiopea Use of Space
合作研究:MUCUS:测量和理解仙后座对空间的利用
  • 批准号:
    2227068
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: The Physical Biology of Leaves in Wind and Waves
合作研究:风浪中叶子的物理生物学
  • 批准号:
    2111765
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: The leaky rake to solid plate transition on flow through biological filtering structures
合作研究:流过生物过滤结构时漏耙到实心板的过渡
  • 批准号:
    2114309
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: The Physical Biology of Leaves in Wind and Waves
合作研究:风浪中叶子的物理生物学
  • 批准号:
    1853545
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: The leaky rake to solid plate transition on flow through biological filtering structures
合作研究:流过生物过滤结构时漏耙到实心板的过渡
  • 批准号:
    1916067
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
UNS: Collaborative Research: Role of Bristled Wings for Flying and Swimming at Low Reynolds Numbers
UNS:合作研究:鬃毛翅膀在低雷诺数下飞行和游泳的作用
  • 批准号:
    1511427
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Flow and Nutrient Exchange Driven by Pulsating Coral
合作研究:脉动珊瑚驱动的流动和养分交换
  • 批准号:
    1504777
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: MPS-BIO: Mathematical Modeling and Experiments of Neuromechanical Pumping
职业:MPS-BIO:神经机械泵的数学建模和实验
  • 批准号:
    1151478
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Symposium Support: Combining experiments with modeling and computational methods to study animal locomotion (Charleston, January 3-7, 2012)
研讨会支持:将实验与建模和计算方法相结合来研究动物运动(查尔斯顿,2012 年 1 月 3-7 日)
  • 批准号:
    1132986
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: New models and Numerical Methods for Flexible Wings, Fins, and Membranes
合作研究:柔性机翼、鳍片和薄膜的新模型和数值方法
  • 批准号:
    1022802
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
  • 批准号:
    61201232
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LTE-Advanced中继网络关键技术研究
  • 批准号:
    61171096
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
IMT-Advanced协作中继网络中的网络编码研究
  • 批准号:
    61040005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
  • 批准号:
    61001116
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向IMT-Advanced的移动组播关键技术研究
  • 批准号:
    61001071
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
  • 批准号:
    2338506
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of Classroom Utterance Analysis System Using Advanced Algorithms
利用先进算法开发课堂话语分析系统
  • 批准号:
    23K11378
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase II: Accelerating R&D through Streamlined Machine Learning Algorithms for Small Data Applications in Advanced Manufacturing
SBIR 第二阶段:加速 R
  • 批准号:
    2325045
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
developing and validating advanced Bayesian optimization algorithms
开发和验证先进的贝叶斯优化算法
  • 批准号:
    2885563
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Advanced Bayesian Inversion Algorithms for Wave Propagation
用于波传播的高级贝叶斯反演算法
  • 批准号:
    DP220102243
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
  • 批准号:
    RGPIN-2017-06469
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Beamforming Algorithms for Transthoracic Ultrasound Imaging
用于经胸超声成像的先进波束形成算法
  • 批准号:
    2751924
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Advanced Algorithms for Plan Recognition
先进的计划识别算法
  • 批准号:
    RGPIN-2017-06350
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Wetland Health and Carbon Stocks Monitoring Using Advanced Machine Learning Algorithms and Remote Sensing Data
使用先进的机器学习算法和遥感数据监测湿地健康和碳储量
  • 批准号:
    DGECR-2022-00155
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Wetland Health and Carbon Stocks Monitoring Using Advanced Machine Learning Algorithms and Remote Sensing Data
使用先进的机器学习算法和遥感数据监测湿地健康和碳储量
  • 批准号:
    RGPIN-2022-04766
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了