Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
基本信息
- 批准号:RGPIN-2017-06469
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Energy disaggregation (also referred as nonintrusive load monitoring) is a combination of signal processing and pattern recognition techniques to estimate the energy consumption of individual appliances from the total energy consumption signal. It is achieved by identifying discriminating features in the aggregated signal and decomposing it into its constituent parts. Disaggregation of the energy consumption data down to the level of appliances has been largely identified as an opportunity for enhanced energy efficiency through citizen awareness, energy demand prediction tools for utilities and smart automatic control of appliances, just to name a few.This research program seeks to advance the field of energy disaggregation to efficiently determine the power consumption of individual electrical loads in real-life scenarios. This will be achieved by building on the applicant's team latest developments in Hall-effect current sensor devices and weakly-supervised machine learning algorithms. Specifically, we will 1) design new energy disaggregation algorithms for residential applications using weakly labeled data from low-precision current sensors, 2) analyze the sensitivity of the disaggregation algorithms to the accuracy and quantity of sensor information, 3) design the next generation of ultra-low-power Hall-effect current sensors and 4) design new energy disaggregation algorithms for commercial and industrial applications with an optimal number of low-precision sensors. These advances will increase the accuracy, the scalability and the adaptability of existing techniques.This research program will train four HQP in domains which are in high demand in industry and academia, gaining important skills in signal processing, machine learning and microelectronics. The research results could also be the starting point of new collaborations, as energy disaggregation is gaining interest from industry and utilities, as confirmed by recent important investments in this field.Natural Resources Canada established that "the Canadian buildings sector has a duty to use our energy resources responsibly and take up the call to action as a mechanism that will strengthen and enrich our economy for future generations." This research program is an important step in that direction, through the development of novel technologies to monitor energy consumption more efficiently, and eventually, enabling leading-edge energy management technologies for smart buildings.
能量分解(也称为非侵入式负载监测)是信号处理和模式识别技术的组合,用于从总能耗信号中估计各个电器的能耗。它是通过识别聚合信号中的区别特征并将其分解为组成部分来实现的。将能源消耗数据分解到电器的层面,是通过提高国民意识、利用电力需求预测工具、智能自动控制电器等来提高能源效率的契机。本研究课题旨在推进能源分解领域的发展,以便在实际生活中有效地确定各个电力负载的电力消耗。这将通过建立在申请人的团队在霍尔效应电流传感器设备和弱监督机器学习算法的最新发展来实现。具体来说,我们将1)使用来自低精度电流传感器的弱标记数据设计用于住宅应用的新的能量解聚算法,2)分析解聚算法对传感器信息的准确性和数量的敏感性,3)设计下一代超低功耗霍尔效应电流传感器; 4)为商业和工业应用设计具有最佳数量的低精度传感器的新能量分解算法。这些进步将提高现有技术的准确性,可扩展性和适应性。该研究计划将在工业和学术界需求很高的领域培养四名HQP,获得信号处理,机器学习和微电子学方面的重要技能。研究结果也可以成为新合作的起点,因为能源分解正在引起工业和公用事业的兴趣,最近在这一领域的重要投资证实了这一点。加拿大自然资源部确定,“加拿大建筑部门有责任负责任地使用我们的能源资源,并采取行动,作为一种机制,将加强和丰富我们的经济,为子孙后代。“这项研究计划是朝着这个方向迈出的重要一步,通过开发新技术来更有效地监测能源消耗,并最终为智能建筑提供领先的能源管理技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gagnon, Ghyslain其他文献
Multistatic Radar Placement Optimization for Cooperative Radar-Communication Systems
- DOI:
10.1109/lcomm.2018.2837913 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:0
- 作者:
Ben Kilani, Moez;Gagnon, Ghyslain;Gagnon, Francois - 通讯作者:
Gagnon, Francois
Multiple instance learning: A survey of problem characteristics and applications
- DOI:
10.1016/j.patcog.2017.10.009 - 发表时间:
2018-05-01 - 期刊:
- 影响因子:8
- 作者:
Carbonneau, Marc-Andre;Cheplygina, Veronika;Gagnon, Ghyslain - 通讯作者:
Gagnon, Ghyslain
Detection of alarms and warning signals on an digital in-ear device
- DOI:
10.1016/j.ergon.2012.07.001 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:3.1
- 作者:
Carbonneau, Marc-Andre;Lezzoum, Narimene;Gagnon, Ghyslain - 通讯作者:
Gagnon, Ghyslain
Energy disaggregation using variational autoencoders
- DOI:
10.1016/j.enbuild.2021.111623 - 发表时间:
2021-11-12 - 期刊:
- 影响因子:6.7
- 作者:
Langevin, Antoine;Carbonneau, Marc-Andre;Gagnon, Ghyslain - 通讯作者:
Gagnon, Ghyslain
A Novel Design Technique for mm-Wave Mismatch Terminations
- DOI:
10.1109/tmtt.2020.3048149 - 发表时间:
2021-03-01 - 期刊:
- 影响因子:4.3
- 作者:
Elsaadany, Mahmoud;Ali, Mohamed Mamdouh M.;Gagnon, Ghyslain - 通讯作者:
Gagnon, Ghyslain
Gagnon, Ghyslain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gagnon, Ghyslain', 18)}}的其他基金
Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
- 批准号:
RGPIN-2017-06469 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
New signal processing, circuits and materials for robust and affordable capacitively-coupled electrocardiography
新的信号处理、电路和材料,用于稳定且经济实惠的电容耦合心电图
- 批准号:
514369-2017 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative Research and Development Grants
Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
- 批准号:
RGPIN-2017-06469 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Low Latency and Highly Secure Protocols for Critical Communications
适用于关键通信的低延迟和高度安全协议
- 批准号:
494694-2016 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative Research and Development Grants
Feature Learning of Critical Live Performance Audio Characteristics for a Virtual Sound Engineer
虚拟音响工程师关键现场表演音频特征的特征学习
- 批准号:
538056-2019 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Low Latency and Highly Secure Protocols for Critical Communications
适用于关键通信的低延迟和高度安全协议
- 批准号:
494694-2016 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative Research and Development Grants
Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
- 批准号:
RGPIN-2017-06469 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
New signal processing, circuits and materials for robust and affordable capacitively-coupled electrocardiography
新的信号处理、电路和材料,用于稳定且经济实惠的电容耦合心电图
- 批准号:
514369-2017 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative Research and Development Grants
Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
- 批准号:
RGPIN-2017-06469 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
- 批准号:
RGPIN-2017-06469 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Advanced thin-slab TOF-PET detector module for next generation of brain PET
用于下一代大脑 PET 的先进薄板 TOF-PET 探测器模块
- 批准号:
10719570 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
A ratcheting pediatric prosthetic finger using advanced rapid manufacturing technology
采用先进快速制造技术的棘轮儿童假肢手指
- 批准号:
10760098 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
- 批准号:
10326345 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Advanced Artificial Pancreas Systems to Enable Fully Automated Glycemic Control in Type 1 Diabetes Mellitus
先进的人工胰腺系统可实现 1 型糖尿病的全自动血糖控制
- 批准号:
10676903 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
- 批准号:
10540773 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
- 批准号:
RGPIN-2017-06469 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
- 批准号:
10090279 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Advanced Artificial Pancreas Systems to Enable Fully Automated Glycemic Control in Type 1 Diabetes Mellitus
先进的人工胰腺系统可实现 1 型糖尿病的全自动血糖控制
- 批准号:
10276560 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别: