Novel approaches to outstanding problems in M/Superstring theory, supergravity and supersymmetric gauge theories

解决 M/超弦理论、超引力和超对称规范理论中突出问题的新方法

基本信息

  • 批准号:
    0855356
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Superstring Theory and its non-perturbative completion known as M-theory provide us with the only known framework unifying Einstein's gravity and other interactions in a quantum mechanically consistent way. This project addresses outstanding problems of fundamental importance for understanding the principles of M/Superstring theory as well as practical directions related to its connection to high energy particle physics, with the eventual goal of finding a non-perturbative formulation of M/Superstring theory that can explain the universe around us. The PI Gunaydin will focus on determining representations of U-duality groups and their extensions and spectrum generating conformal and quasiconformal symmetry groups will be further developed and applied to the spectra of compactified M/Superstring theory and related supergravity theories. Unified N = 2 Maxwell-Einstein and Yang-Mills-Einstein supergravity theories in five and four dimensions will be further developed and their applications to supersymmetry phenomenology investigated. Their M/Superstring theoretic origins as well as their black hole solutions will also be studied. The oscillator construction of unitary representations of noncompact supergroups will be further developed so as to solve some of the outstanding problems in AdS/CFT dualities in M/superstring theory and related spin chain systems. The PI will also study Gauge/string duality with reduced supersymmetry, its effects on the integrability of the world-sheet theory and of the gauge theory dilatation operator as well as on the direct comparison of the relevant gauge theory asymptotic Bethe Ansatz with perturbative worldsheet calculations. The Co-pi-Radu Roiban will work on the following problems: The construction of new techniques and the application of existing techniques for efficient higher-loop high-multiplicity calculations in supersymmetric gauge theories with particular focus on the maximally supersymmetric theory in four dimensions; the identification of all-order symmetries of the scattering matrix of this theory. He will also study the high energy behavior of supergravity theories, in particular that of the maximally supersymmetric ungauged supergravity in four dimensions, and the existence of perturbatively-finite point-like quantum theories of gravity; the identification of the origin of the required perturbative cancellations.With regard to broader impacts, symmetry principles underlie all of modern physics. Hence some of the methods developed and the results obtained here will have applications in other areas of theoretical physics as well as in mathematics. Similarly, the techniques developed for fully exploiting the consequences of integrability for the gauge/string duality have applications in statistical mechanics and condensed matter physics. Several graduate students will be involved in the research proposed here, thus enhancing the opportunities for the training of Ph.D. students at Penn State University.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。超弦理论和它的非微扰完备性(称为M理论)为我们提供了唯一已知的框架,以量子力学一致的方式统一了爱因斯坦的引力和其他相互作用。该项目解决了对于理解M/超弦理论的原理以及与高能粒子物理学相关的实际方向具有根本重要性的突出问题,最终目标是找到一个可以解释我们周围宇宙的M/超弦理论的非微扰公式。PI Gunaydin将专注于确定U-对偶群及其扩展的表示,并且将进一步发展产生共形和拟共形对称群的谱,并将其应用于紧致M/超弦理论和相关超引力理论的谱。统一的N = 2麦克斯韦-爱因斯坦和杨-米尔斯-爱因斯坦超引力理论在五维和四维将进一步发展和他们的应用超对称现象学的调查。它们的M/超弦理论起源以及它们的黑洞解也将被研究。进一步发展非紧超群幺正表示的振子构造,以解决M/超弦理论及相关自旋链系统中AdS/CFT对偶中的一些突出问题。PI还将研究规范/弦对偶与减少超对称性,其对世界单理论和规范理论扩张算子的可积性的影响,以及对相关规范理论渐近Bethe Answer与微扰世界单计算的直接比较。Co-pi-Radu Roiban将研究以下问题:新技术的构建和现有技术的应用,用于超对称规范理论中的高效高循环高多重数计算,特别关注四维最大超对称理论;识别该理论散射矩阵的所有阶对称性。他还将研究超引力理论的高能行为,特别是四维最大超对称无规范超引力的高能行为,以及微扰有限点状引力量子理论的存在;所需微扰抵消的起源的识别。就更广泛的影响而言,对称性原则是所有现代物理学的基础。因此,一些方法的开发和获得的结果在这里将有应用在其他领域的理论物理以及在数学。类似地,为充分利用规范/弦对偶的可积性的结果而开发的技术在统计力学和凝聚态物理学中有应用。一些研究生将参与这里提出的研究,从而提高了培养博士的机会。宾夕法尼亚州立大学的学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Murat Gunaydin其他文献

Structural response of half-scale pumice concrete masonry building: shake table/ambient vibration tests and FE analysis
  • DOI:
    10.1007/s11012-024-01849-4
  • 发表时间:
    2024-07-08
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Ali Kaya;Boudjamaa Roudane;Süleyman Adanur;Fezayil Sunca;Ali Fuat Genç;Murat Gunaydin;Ahmet Can Altunişik
  • 通讯作者:
    Ahmet Can Altunişik
Empirical fragility curves for single-story precast industrial buildings extracted from the 2023 Turkiye earthquake survey data
从 2023 年土耳其地震调查数据中提取的单层预制工业建筑的经验脆弱性曲线
  • DOI:
    10.1016/j.engstruct.2025.120340
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    6.400
  • 作者:
    Rafet Sisman;Ahmet Can Altunisik;Murat Gunaydin;Fatih Yesevi Okur;Zafer Yilmaz;Fezayil Sunca;Banu Aslan;Tugrul Sezdirmez;Ertugrul Taciroglu
  • 通讯作者:
    Ertugrul Taciroglu
Erratum to: Are we aware how contaminated our mobile phones with nosocomial pathogens?
  • DOI:
    10.1186/1476-0711-8-31
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Fatma Ulger;Saban Esen;Ahmet Dilek;Keramettin Yanik;Murat Gunaydin;Hakan Leblebicioglu
  • 通讯作者:
    Hakan Leblebicioglu

Murat Gunaydin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Murat Gunaydin', 18)}}的其他基金

Novel Approaches to Outstanding Problems in M/Superstring Theory, Supergravity and Supersymmetric Gauge Theories
M/超弦理论、超引力和超对称规范理论中突出问题的新方法
  • 批准号:
    1213183
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
An Algebraic Approach to M/Superstring Theory and Supergravity
M/超弦理论和超引力的代数方法
  • 批准号:
    0555605
  • 财政年份:
    2006
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
An Algebraic Approach to M/Superstring Theory and Supergravity
M/超弦理论和超引力的代数方法
  • 批准号:
    0245337
  • 财政年份:
    2003
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
An Algebraic Approach to Supersymmetric Field Theories and M/Superstring Theory
超对称场论和 M/超弦理论的代数方法
  • 批准号:
    0099548
  • 财政年份:
    2001
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
An Algebraic Approach to Supersymmetric Field Theories and Superstrings
超对称场论和超弦的代数方法
  • 批准号:
    9802510
  • 财政年份:
    1998
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
An Algebraic Approach to Some Current Problems in Supersymmetric Field Theories and Superstrings
超对称场论和超弦中一些当前问题的代数方法
  • 批准号:
    9631332
  • 财政年份:
    1996
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
An Algebraic Approach to Superconformal Field Theories and Their Application to Superstring Theory
超共形场论的代数方法及其在超弦理论中的应用
  • 批准号:
    9108286
  • 财政年份:
    1991
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
An Algebraic Approach to Conformal Field Theory and its Applications to Superstrings
共形场论的代数方法及其在超弦中的应用
  • 批准号:
    8909549
  • 财政年份:
    1989
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
  • 批准号:
    2608627
  • 财政年份:
    2025
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    EU-Funded
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
  • 批准号:
    10080598
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    EU-Funded
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
  • 批准号:
    AH/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
  • 批准号:
    EP/Y032640/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
  • 批准号:
    MR/Y020200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了